Design and Implementation of DC-DC Converter with Inc-Cond Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Design and Implementation of DC-DC Converter with Inc-Cond Algorithm

Authors: Mustafa Engin Basoğlu, Bekir Çakır

Abstract:

The most important component affecting the efficiency of photovoltaic power systems are solar panels. In other words, efficiency of these systems are significantly affected due to the being low efficiency of solar panel. Thus, solar panels should be operated under maximum power point conditions through a power converter. In this study, design of boost converter has been carried out with maximum power point tracking (MPPT) algorithm which is incremental conductance (Inc-Cond). By using this algorithm, importance of power converter in MPPT hardware design, impacts of MPPT operation have been shown. It is worth noting that initial operation point is the main criteria for determining the MPPT performance. In addition, it is shown that if value of load resistance is lower than critical value, failure operation is realized. For these analyzes, direct duty control is used for simplifying the control.

Keywords: Boost converter, Incremental Conductance (Inc- Cond), MPPT, Solar panel.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1098088

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3658

References:


[1] K. B. Varınca, “Türkiye'de günes enerjisi potansiyeli ve bu potansiyelin kullanım derecesi, yöntemi ve yaygınlığı üzerine bir arastırma,” in I. Ulusal Günes ve Hidrojen Enerjisi Kongresi, Eskisehir, 2006, pp. 270- 275.
[2] Energy&Sustainable Environmental Technologies, Repuclic of Turkey Prime Ministry Investment Support and Promotion Agency, http://www.invest.gov.tr (Available: 22.07.2014).
[3] T. Esram, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. on Energy Conversion, vol. 22, pp. 439-449, 2007.
[4] T. Noguchi, S. Togashi, R. Nakamoto, “Short-current pulse-based maximum power point tracking method for multiple photovoltaic and converter module system,” IEEE Trans. on Industrial Electronics, vol. 49, pp. 217-223, 2002.
[5] I. Houssamo, F. Locment, M. Sechilariu, “Maximum power point tracking for photovoltaic system: Development and experimental comparison of two algorithms,” Renewable Energy, vol. 35, pp. 2381- 2387, 2010.
[6] C. H. Lin, C. H. Huang, Y.C. Du, J. L. Chen, “Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method,” Applied Energy, vol. 88, pp. 4840-4847, 2011.
[7] A. Dolara, R. Faranda, “Energy comparison of seven MPPT techniques for PV system,” Journal of Electromagnetic Analysis & Applications, vol. 3, pp. 152-162, 2009.
[8] F. Duan, F. Liu, B. Liu, Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Trans. on Industrial Electronics, vol. 55, pp. 2622-2628, 2008.
[9] A. R. Reisi, M. H. Moradi, S. Jamasb, “Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review,” Renewable and Sustainable Reviews, vol. 19, pp. 433-443, 2010.
[10] H. S. Chung, K. K. Tse, S. Y. R. Hui, C. M. Mok, M. T. Ho, “A novel maximum power point tracking technique for solar panels using a sepic or cuk converter,” IEEE Trans. on Power Electronics, vol. 18, pp. 717- 724, 2003.
[11] M. E. Basoğlu, “ Günes Enerjisi Sistemlerinde Kullanılan Maksimum Güç Noktası Đzleyicili Yükseltici DA-DA Dönüstürücü Analizi ve Gerçeklestirilmesi, Master Thesis, Institute of Science Kocaeli University, 2013.