Search results for: Punching shear strength
1543 Design and Fabrication of an Array Microejector Driven by a Shear-Mode Piezoelectric Actuator
Authors: Chiang-Ho Cheng, Hong-Yih Cheng, An-Shik Yang, Tung-Hsun Hsu
Abstract:
This paper reports a novel actuating design that uses the shear deformation of a piezoelectric actuator to deflect a bulge-diaphragm for driving an array microdroplet ejector. In essence, we employed a circular-shaped actuator poled radial direction with remnant polarization normal to the actuating electric field for inducing the piezoelectric shear effect. The array microdroplet ejector consists of a shear type piezoelectric actuator, a vibration plate, two chamber plates, two channel plates and a nozzle plate. The vibration, chamber and nozzle plate components are fabricated using nickel electroforming technology, whereas the channel plate is fabricated by etching of stainless steel. The diaphragm displacement was measured by the laser two-dimensional scanning vibrometer. The ejected droplets of the microejector were also observed via an optic visualization system.Keywords: Actuator, nozzle, microejector, piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20951542 The Effects of System Change on Buildings Equipped with Structural Systems with the Sandwich Composite Wall with J-Hook Connectors and Reinforced Concrete Shear Walls
Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar
Abstract:
The sandwich composite walls (SCSSC) have more ductility and energy dissipation than conventional reinforced concrete shear walls. SCSSCs have acceptable compressive, shear, in-plane bending, and out-of-plane bending capacities. The use of sandwich-composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. In this paper, incremental dynamic analyses for 10- and 15-story steel structures were performed under seven far-faults by OpenSees. The demand values of 10- and 15-story models are reduced by up to 32% and 45%, respectively, while the structural system change from shear walls (SW) to SCSSC.
Keywords: Sandwich composite wall, SCSSC, fling step, fragility curve, IDA, inter story drift ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2851541 GPU-Based Volume Rendering for Medical Imagery
Authors: Hadjira Bentoumi, Pascal Gautron, Kadi Bouatouch
Abstract:
We present a method for fast volume rendering using graphics hardware (GPU). To our knowledge, it is the first implementation on the GPU. Based on the Shear-Warp algorithm, our GPU-based method provides real-time frame rates and outperforms the CPU-based implementation. When the number of slices is not sufficient, we add in-between slices computed by interpolation. This improves then the quality of the rendered images. We have also implemented the ray marching algorithm on the GPU. The results generated by the three algorithms (CPU-based and GPU-based Shear- Warp, GPU-based Ray Marching) for two test models has proved that the ray marching algorithm outperforms the shear-warp methods in terms of speed up and image quality.Keywords: Volume rendering, graphics processors
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18531540 The Effect of Cracking on Stiffness of Shear Walls under Lateral Loads
Authors: Anas M. Fares
Abstract:
The lateral stiffness of buildings is one of the most important properties which define resistance to displacements under lateral loads. Moreover, it has a great impact on the natural period of the structures. Different stiffness’s values can ultimately affect the behavior of the structure under the seismic load and the lateral forces that will be applied to it. In this study the effect of cracking is studied on 2D shell thin cantilever shear wall by using ETABS. Multi linear elastic analysis is conducted with the ACI stiffness modifiers for each analysis step. The results showed that the cracks affect the value of the drift especially at the top of the high rise buildings and this will change the lateral stiffness and so change the fundamental period of the structures which lead to change in the applied shear force that comes from the earthquake. Finally, this study emphasizes that the finite element method can be considered as a good tool to predict the tensile stresses in the elements.
Keywords: Lateral loads, lateral displacement, reinforced concrete, shear wall, Cracks, ETABS, ACI code, stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16561539 Grooving Method to Postpone Debonding of FRP Sheets Used for Shear Strengthening
Authors: Davood Mostofinejad, Seyed Amirali Mostafavizadeh, Amirhomayoon Tabatabaei Kashani
Abstract:
One of the most common practices for strengthening the reinforced concrete structures is the application of FRP (Fiber Reinforce Plastic) sheets to increase the flexural and shear strengths of the member. The elastic modulus of FRP is considerably higher than that of concrete. This will result in debonding between the FRP sheets and concrete surface. With conventional surface preparation of concrete, the ultimate capacity of the FRP sheets can hardly be achieved. New methods for preparation of the bonding surface have shown improvements in reducing the premature debonding of FRP sheets from concrete surface. The present experimental study focuses on the application of grooving method to postpone debonding of the FRP sheets attached to the side faces of concrete beams for shear strengthening. Comparison has also been made with conventional surface preparation method. This study clearly shows the efficiency of grooving method compared to surface preparation method, in preventing the debonding phenomenon and in increasing the load carrying capacity of FRP.Keywords: FRP composite, grooving, rehabilitation, reinforced concrete, shear strengthening, surface preparation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22511538 The Viscosity of Xanthan Gum Grout with Different pH and Ionic Strength
Authors: H. Ahmad Raji, R. Ziaie Moayed, M. A. Nozari
Abstract:
Xanthan gum (XG) an eco-friendly biopolymer has been recently explicitly investigated for ground improvement approaches. Rheological behavior of this additive strongly depends on electrochemical condition such as pH, ionic strength and also its content in aqueous solution. So, the effects of these factors have been studied in this paper considering various XG contents as 0.25, 0.5, 1, and 2% of water. Moreover, adjusting pH values such as 3, 5, 7 and 9 in addition to increasing ionic strength to 0.1 and 0.2 in the molar scale has covered a practical range of electrochemical condition. The viscosity of grouts shows an apparent upward trend with an increase in ionic strength and XG content. Also, pH affects the polymerization as much as other parameters. As a result, XG behavior is severely influenced by electrochemical settingsKeywords: Electrochemical condition, ionic strength, viscosity, xanthan gum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6561537 Design of Roller Compacting Concrete Pavement
Authors: O. Zarrin, M. Ramezan Shirazi
Abstract:
The quality of concrete is usually defined by compressive strength, but flexural strength is the most important characteristic of concrete in a pavement which control the mix design of concrete instead of compressive strength. Therefore, the aggregates which are selected for the pavements are affected by higher flexural strength. Roller Compacting Concrete Pavement (RCCP) is not a new construction method. The other characteristic of this method is no bleeding and less shrinkage due to the lower amount of water. For this purpose, a roller is needed for placing and compacting. The surface of RCCP is not smooth; therefore, the most common use of this pavement is in an industrial zone with slower traffic speed which requires durable and tough pavement. For preparing a smoother surface, it can be achieved by asphalt paver. RCCP decrease the finishing cost because there are no bars, formwork, and the lesser labor need for placing the concrete. In this paper, different aspect of RCCP such as mix design, flexural, compressive strength and focus on the different part of RCCP on detail have been investigated.Keywords: Flexural Strength, Compressive Strength, Pavement, Asphalt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20641536 The Effect of Confinement Shapes on Over-Reinforced HSC Beams
Authors: Ross Jeffry, Muhammad N. S. Hadi
Abstract:
High strength concrete (HSC) provides high strength but lower ductility than normal strength concrete. This low ductility limits the benefit of using HSC in building safe structures. On the other hand, when designing reinforced concrete beams, designers have to limit the amount of tensile reinforcement to prevent the brittle failure of concrete. Therefore the full potential of the use of steel reinforcement can not be achieved. This paper presents the idea of confining concrete in the compression zone so that the HSC will be in a state of triaxial compression, which leads to improvements in strength and ductility. Five beams made of HSC were cast and tested. The cross section of the beams was 200×300 mm, with a length of 4 m and a clear span of 3.6 m subjected to four-point loading, with emphasis placed on the midspan deflection. The first beam served as a reference beam. The remaining beams had different tensile reinforcement and the confinement shapes were changed to gauge their effectiveness in improving the strength and ductility of the beams. The compressive strength of the concrete was 85 MPa and the tensile strength of the steel was 500 MPa and for the stirrups and helixes was 250 MPa. Results of testing the five beams proved that placing helixes with different diameters as a variable parameter in the compression zone of reinforced concrete beams improve their strength and ductility.Keywords: Confinement, ductility, high strength concrete, reinforced concrete beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22381535 Study the Effect of Roughness on the Higher Order Moment to Extract Information about the Turbulent Flow Structure in an Open Channel Flow
Authors: Md Abdullah Al Faruque, Ram Balachandar
Abstract:
The present study was carried out to understand the extent of effect of roughness and Reynolds number in open channel flow (OCF). To this extent, four different types of bed surface conditions consisting smooth, distributed roughness, continuous roughness, natural sand bed and two different Reynolds number for each bed surfaces were adopted in this study. Particular attention was given on mean velocity, turbulence intensity, Reynolds shear stress, correlation, higher order moments and quadrant analysis. Further, the extent of influence of roughness and Reynolds number in the depth-wise direction also studied. Increasing Reynolds shear stress near rough beds are noticed due to arrays of discrete roughness elements and flow over these elements generating a series of wakes which contributes to the generation of significantly higher Reynolds shear stress.
Keywords: Bed roughness, ejection, sweep, open channel flow, Reynolds Shear Stress, turbulent boundary layer, velocity triple product.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17321534 Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect
Authors: Mantai Chen, Johnny Ching Ming Ho
Abstract:
The stress-strain relationship of concrete under flexure is one of the essential parameters in assessing ultimate flexural strength capacity of RC beams. Currently, the concrete stress-strain curve in flexure is obtained by incorporating a constant scale-down factor of 0.85 in the uniaxial stress-strain curve. However, it was revealed that strain gradient would improve the maximum concrete stress under flexure and concrete stress-strain curve is strain gradient dependent. Based on the strain-gradient-dependent concrete stress-strain curve, the investigation of the combined effects of strain gradient and concrete strength on flexural strength of RC beams was extended to high strength concrete up to 100 MPa by theoretical analysis. As an extension and application of the authors’ previous study, a new flexural strength design method incorporating the combined effects of strain gradient and concrete strength is developed. A set of equivalent rectangular concrete stress block parameters is proposed and applied to produce a series of design charts showing that the flexural strength of RC beams are improved with strain gradient effect considered.
Keywords: Beams, Equivalent concrete stress block, Flexural strength, Strain gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41061533 The Effects of Placement and Cross-Section Shape of Shear Walls in Multi-Story RC Buildings with Plan Irregularity on Their Seismic Behavior by Using Nonlinear Time History Analyses
Authors: Mohammad Aminnia, Mahmood Hosseini
Abstract:
Environmental and functional conditions, sometimes, necessitate the architectural plan of the building to be asymmetric, and this result in an asymmetric structure. In such cases finding an optimal pattern for locating the components of lateral load bearing system, including shear walls, in the building’s plan is desired. In case of shear wall in addition to the location the shape of the wall cross-section is also an effective factor. Various types of shear walls and their proper layout might come effective in better stiffness distribution and more appropriate seismic response of the building. Several studies have been conducted in the context of analysis and design of shear walls; however, few studies have been performed on making decisions for the location and form of shear walls in multistory buildings, especially those with irregular plan. In this study, an attempt has been made to obtain the most reliable seismic behavior of multi-story reinforced concrete vertically chamfered buildings by using more appropriate shear walls form and arrangement in 7-, 10-, 12-, and 15-stoy buildings. The considered forms and arrangements include common rectangular walls and L-, T-, U- and Z-shaped plan, located as the core or in the outer frames of the building structure. Comparison of seismic behaviors of the buildings, including maximum roof displacement and particularly formation of plastic hinges and their distribution in the buildings’ structures, have been done based on the results of a series of nonlinear time history analyses, by using a set of selected earthquake records. Results show that shear walls with U-shaped cross-section, placed as the building central core, and also walls with Z-shaped cross-section, placed at the corners give the building more reliable seismic behavior.Keywords: Vertically chamfered buildings, non-linear time history analyses, L-, T-, U- and Z-shaped plan walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29271532 The Grinding Influence on the Strength of Fan-Out Wafer-Level Packages
Authors: Z. W. Zhong, C. Xu, W. K. Choi
Abstract:
To build a thin fan-out wafer-level package, the package had to be ground to a thin level. In this work, the influence of the grinding processes on the strength of the fan-out wafer-level packages was investigated. After different grinding processes, all specimens were placed on a three-point-bending fixture installed on a universal tester for three-point-bending testing, and the strength of the fan-out wafer-level packages was measured. The experiments revealed that the average flexure strength increased with the decreasing surface roughness height of the fan-out wafer-level package tested. The grinding processes had a significant influence on the strength of the fan-out wafer-level packages investigated.Keywords: FOWLP strength, surface roughness, three-point bending, grinding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10161531 Waterproofing Agent in Concrete for Tensile Improvement
Authors: Muhamad Azani Yahya, Umi Nadiah Nor Ali, Mohammed Alias Yusof, Norazman Mohamad Nor, Vikneswaran Munikanan
Abstract:
In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost.
Keywords: High tensile concrete, waterproofing agent, concrete, rheology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14321530 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests
Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan
Abstract:
This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.
Keywords: Dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8841529 Sound Exposure Effects towards Ross Broilers Growth Rate
Authors: Rashidah Ghazali, Herlina Abdul Rahim, Mashitah Shikh Maidin, Shafishuhaza Sahlan, Noramli Abdul Razak
Abstract:
Sound exposure effects have been investigated by broadcasting a group of broilers with sound of Quran verses (Group B) whereas the other group is the control broilers (Group C). The growth rate comparisons in terms of weight and raw meat texture measured by shear force have been investigated. Twenty-seven broilers were randomly selected from each group on Day 24 and weight measurement was carried out every week till the harvest day (Day 39).Group B showed a higher mean weight on Day 24 (1.441 ± 0.013 kg) than Group C. Significant difference in the weight on Day 39 existed for Group B compared to Group C (p < 0.05). However, there was no significant (p >0.05) difference of shear force in the same muscles (breast and drumstick raw meat) of both groups but the shear force of the breast meat for Group B and C broilers was lower (p < 0.05) than that of their drumstick meat. Thus, broadcasting the sound of Quran verses in the coop can be applied to improve the growth rate of broilers for producing better quality poultry.
Keywords: Broilers, sound, shear force, weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31341528 Geometrical Structure and Layer Orientation Effects on Strength, Material Consumption and Building Time of FDM Rapid Prototyped Samples
Authors: Ahmed A. D. Sarhan, Chong Feng Duan, Mum Wai Yip, M. Sayuti
Abstract:
Rapid Prototyping (RP) technologies enable physical parts to be produced from various materials without depending on the conventional tooling. Fused Deposition Modeling (FDM) is one of the famous RP processes used at present. Tensile strength and compressive strength resistance will be identified for different sample structures and different layer orientations of ABS rapid prototype solid models. The samples will be fabricated by a FDM rapid prototyping machine in different layer orientations with variations in internal geometrical structure. The 0° orientation where layers were deposited along the length of the samples displayed superior strength and impact resistance over all the other orientations. The anisotropic properties were probably caused by weak interlayer bonding and interlayer porosity.Keywords: Building orientation, compression strength, rapid prototyping, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17101527 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading
Authors: Danladi Ali, Onah Festus Iloabuchi
Abstract:
In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using onedimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.
Keywords: One-dimensional multilevel wavelets, path loss, GSM signal strength, propagation and urban environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581526 A Simple Device for in-situ Direct Shear and Sinkage Tests
Authors: A. Jerves, H. Ling, J. Gabaldon, M. Usoltceva, C. Coust´e, A. Agarwal, R. Hurley, J. Andrade
Abstract:
This work introduces a simple device designed to perform in-situ direct shear and sinkage tests on granular materials as sand, clays, or regolith. It consists of a box nested within a larger box. Both have open bottoms, allowing them to be lowered into the material. Afterwards, two rotating plates on opposite sides of the outer box will rotate outwards in order to clear regolith on either side, providing room for the inner box to move relative to the plates and perform a shear test without the resistance of the surrounding soil. From this test, Coulomb parameters, including cohesion and internal friction angle, as well as, Bekker parameters can be inferred. This device has been designed for a laboratory setting, but with few modifications, could be put on the underside of a rover for use in a remote location. The goal behind this work is to ultimately create a compact, but accurate measuring tool to put onto a rover or any kind of exploratory vehicle to test for regolith properties of celestial bodies.
Keywords: Simple shear, friction angle, Bekker parameters, device, regolith.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21931525 Evaluation of the End Effect Impact on the Torsion Test for Determining the Shear Modulus of a Timber Beam through a Photogrammetry Approach
Authors: Niaz Gharavi, Hexin Zhang, Yanjun Xie
Abstract:
The timber beam end effect in the torsion test is evaluated using binocular stereo vision system. It is recommended by BS EN 408:2010+A1:2012 to exclude a distance of two to three times of cross-sectional thickness (b) from ends to avoid the end effect; whereas, this study indicates that this distance is not sufficiently far enough to remove this effect in slender cross-sections. The shear modulus of six timber beams with different aspect ratios is determined at the various angles and cross-sections. The result of this experiment shows that the end affected span of each specimen varies depending on their aspect ratios. It is concluded that by increasing the aspect ratio this span will increase. However, by increasing the distance from the ends to the values greater than 6b, the shear modulus trend becomes constant and end effect will be negligible. Moreover, it is concluded that end affected span is preferred to be depth-dependent rather than thickness-dependant.Keywords: End effect, structural-size torsion test, shear properties, timber engineering, binocular stereo vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13631524 Stability of Functionally Graded Beams with Piezoelectric Layers Based on the First Order Shear Deformation Theory
Authors: M. Karami Khorramabadi, A. R. Nezamabadi
Abstract:
Stability of functionally graded beams with piezoelectric layers subjected to axial compressive load that is simply supported at both ends is studied in this paper. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter, functionally graded index and piezoelectric thickness on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.
Keywords: Stability, Functionally graded beam, First order shear deformation theory, Piezoelectric layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16711523 The Effect of Ageing Treatment of Aluminum Alloys for Fuselage Structure-Light Aircraft
Authors: Shwe Wut Hmon Aye, Kay Thi Lwin, Waing Waing Kay Khine Oo
Abstract:
As the material used for fuselage structure must possess low density, high strength to weight ratio, the selection of appropriate materials for fuselage structure is one of the most important tasks. Aluminum metal itself is soft and low in strength. It can be made stronger by giving proper combination of suitable alloy addition, mechanical treatment and thermal treatment. The usual thermal treatment given to aluminum alloys is called age-hardening or precipitation hardening. In this paper, the studies are carried out on 7075 aluminum alloy which is how to improve strength level for fuselage structure. The marked effect of the strength on the ternary alloy is clearly demonstrated at several ageing times and temperatures. It is concluded that aluminum-zinc-magnesium alloy can get the highest strength level in natural ageing.Keywords: Aluminum alloy, ageing, heat treatment, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23201522 Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites
Authors: Min Ye Koo, Gyo Woo Lee
Abstract:
In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content show better dispersion and higher strength than those of the other specimens. The Young’s moduli of the specimens increased as the contents of the nanotube filler in the matrix were increased. The specimen having a 0.6 wt% nanotube filler content showed higher thermal conductivity than that of the other specimens. While, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value of thermal expansion than that of the other specimens. On the basis of the measured and evaluated properties of the composites, we believe that the simple and time-saving fabrication process used in this study was sufficient to obtain improved properties of the specimens.
Keywords: Carbon Nanotube Filler, Epoxy Composite, Ultra-Sonication, Shear Mixer, Mechanical Property, Thermal Property.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26661521 Shrinkage of High Strength Concrete
Authors: S.M. Gupta, V.K. Sehgal, S.K. Kaushik
Abstract:
This paper presents the results of an experimental investigation carried out to evaluate the shrinkage of High Strength Concrete. High Strength Concrete is made by partially replacement of cement by flyash and silica fume. The shrinkage of High Strength Concrete has been studied using the different types of coarse and fine aggregates i.e. Sandstone and Granite of 12.5 mm size and Yamuna and Badarpur Sand. The Mix proportion of concrete is 1:0.8:2.2 with water cement ratio as 0.30. Superplasticizer dose @ of 2% by weight of cement is added to achieve the required degree of workability in terms of compaction factor. From the test results of the above investigation it can be concluded that the shrinkage strain of High Strength Concrete increases with age. The shrinkage strain of concrete with replacement of cement by 10% of Flyash and Silica fume respectively at various ages are more (6 to 10%) than the shrinkage strain of concrete without Flyash and Silica fume. The shrinkage strain of concrete with Badarpur sand as Fine aggregate at 90 days is slightly less (10%) than that of concrete with Yamuna Sand. Further, the shrinkage strain of concrete with Granite as Coarse aggregate at 90 days is slightly less (6 to 7%) than that of concrete with Sand stone as aggregate of same size. The shrinkage strain of High Strength Concrete is also compared with that of normal strength concrete. Test results show that the shrinkage strain of high strength concrete is less than that of normal strength concrete.Keywords: Shrinkage high strength concrete, fly ash, silica fume& superplastizers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25281520 The Effect of Vertical Shear-Link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems
Authors: Mohammad Reza Baradaran, Farhad Hamzezarghani, Mehdi Rastegari Ghiri, Zahra Mirsanjari
Abstract:
Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample.Keywords: Vertical shear-link, passive control, cyclic analysis, energy dissipation, honeycomb beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27401519 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method
Authors: H. Nikzad, S. Yoshitomi
Abstract:
This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.
Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12991518 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems
Authors: Zi-Ang Li, Mu-Xuan Tao
Abstract:
During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.
Keywords: Finite element analysis, seismic performance evaluation, separated composite structural system, static pushover analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5721517 Experimental Study of Light Crude Oil-Water Emulsions
Authors: M. Meriem-Benziane, Sabah A. Abdul-Wahab, H. Zahloul, M. Belhadri
Abstract:
This paper made an attempt to investigate the problem associated with enhancement of emulsions of light crude oil-water recovery in an oil field of Algerian Sahara. Measurements were taken through experiments using RheoStress (RS600). Factors such as shear rate, temperature and light oil concentration on the viscosity behavior were considered. Experimental measurements were performed in terms of shear stress–shear rate, yield stress and flow index on mixture of light crude oil–water. The rheological behavior of emulsion showed Non-Newtonian shear thinning behavior (Herschel-Bulkley). The experiments done in the laboratory showed the stability of some water in light crude oil emulsions form during consolidate oil recovery process. To break the emulsion using additives may involve higher cost and could be very expensive. Therefore, further research should be directed to find solution of these problems that have been encountered.
Keywords: Emulsion, Flow index, Herschel-Bulkley model, Newton model, Oil field, Rheology, Yield stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15231516 Seismic Base Shear Force Depending on Building Fundamental Period and Site Conditions: Deterministic Formulation and Probabilistic Analysis
Authors: S. Dorbani, M. Badaoui, D. Benouar
Abstract:
The aim of this paper is to investigate the effect of the building fundamental period of reinforced concrete buildings of (6, 9, and 12-storey), with different floor plans: Symmetric, mono-symmetric, and unsymmetric. These structures are erected at different epicentral distances. Using the Boumerdes, Algeria (2003) earthquake data, we focused primarily on the establishment of the deterministic formulation linking the base shear force to two parameters: The first one is the fundamental period that represents the numerical fingerprint of the structure, and the second one is the epicentral distance used to represent the impact of the earthquake on this force. In a second step, with a view to highlight the effect of uncertainty in these parameters on the analyzed response, these parameters are modeled as random variables with a log-normal distribution. The variability of the coefficients of variation of the chosen uncertain parameters, on the statistics on the seismic base shear force, showed that the effect of uncertainty on fundamental period on this force statistics is low compared to the epicentral distance uncertainty influence.
Keywords: Base shear force, fundamental period, epicentral distance, uncertainty, lognormal variable, statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13011515 Quality of Concrete of Recent Development Projects in Libya
Authors: Mohamed .S .Alazhari, Milad. M. Al Shebani
Abstract:
Numerous concrete structures projects are currently running in Libya as part of a US$50 billion government funding. The quality of concrete used in 20 different construction projects were assessed based mainly on the concrete compressive strength achieved. The projects are scattered all over the country and are at various levels of completeness. For most of these projects, the concrete compressive strength was obtained from test results of a 150mm standard cube mold. Statistical analysis of collected concrete compressive strengths reveals that the data in general followed a normal distribution pattern. The study covers comparison and assessment of concrete quality aspects such as: quality control, strength range, data standard deviation, data scatter, and ratio of minimum strength to design strength. Site quality control for these projects ranged from very good to poor according to ACI214 criteria [1]. The ranges (Rg) of the strength (max. strength – min. strength) divided by average strength are from (34% to 160%). Data scatter is measured as the range (Rg) divided by standard deviation () and is found to be (1.82 to 11.04), indicating that the range is ±3σ. International construction companies working in Libya follow different assessment criteria for concrete compressive strength in lieu of national unified procedure. The study reveals that assessments of concrete quality conducted by these construction companies usually meet their adopted (internal) standards, but sometimes fail to meet internationally known standard requirements. The assessment of concrete presented in this paper is based on ACI, British standards and proposed Libyan concrete strength assessment criteria.Keywords: Acceptance criteria, Concrete, Compressive strength, quality control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17701514 Experimental Study on Recycled Aggregate Pervious Concrete
Authors: Ji Wenzhan, Zhang Tao, Li Guoyou
Abstract:
Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using "PU" aggregates, the strength of 7d and 28d concrete using "TOU" aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications.
Keywords: Recycled aggregate, pervious concrete, compressive strength, permeability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729