Search results for: Ni-Mn coating.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 211

Search results for: Ni-Mn coating.

31 Hazardous Waste Management of Transmission Line Tower Manufacturing

Authors: S.P.Gautam, P.S.Bundela, R.K. Jain, V. N. Tripathi

Abstract:

The manufacturing transmission line tower parts has being generated hazardous waste which is required proper disposal of waste for protection of land pollution. Manufacturing Process in the manufacturing of steel angle, plates, pipes, channels are passes through conventional, semi automatic and CNC machines for cutting, marking, punching, drilling, notching, bending operations. All fabricated material Coated with thin layer of Zinc in Galvanizing plant where molten zinc is used for coating. Prior to Galvanizing, chemical like 33% concentrated HCl Acid, ammonium chloride and d-oil being used for pretreatment of iron. The bath of water with sodium dichromate is used for cooling and protection of the galvanized steel. For the heating purpose the furnace oil burners are used. These above process the Zinc dross, Zinc ash, ETP sludge and waste pickled acid generated as hazardous waste. The RPG has made captive secured land fill site, since 1997 since then it was using for disposal of hazardous waste after completion of SLF (Secured land fill) site. The RPG has raised height from ground level then now it is being used for disposal of waste as he designed the SLF after in creasing height of from GL it is functional without leach ate or adverse impacts in the environment.

Keywords: Disposal, Drilling, Fabricated. Hazardous waste, Punching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
30 The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils

Authors: A. S. Soğancı

Abstract:

Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipments by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be said that stabilization of expansive soils with polypropylene fiber is an effective method.

Keywords: Expansive soils, polypropylene fiber, stabilization, swelling percent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5747
29 Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation

Authors: P. Chultheera, T. Rirksomboon, S. Kulprathipanja, C. Liu, W. Chinsirikul, N. Kerddonfag

Abstract:

Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO2/CH4 separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs.

Keywords: Mixed matrix membrane, membrane, CO2/CH4 separation, activated carbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
28 Study of Reactive Wetting of Sn–0.7Cu and Sn–0.3Ag–0.7Cu Lead Free Solders during Solidification on Nickel Coated Al Substrates

Authors: Satyanarayana, K.N. Prabhu

Abstract:

Microstructure, wetting behavior and interfacial reactions between Sn–0.7Cu and Sn–0.3Ag–0.7Cu (SAC0307) solders solidified on Ni coated Al substrates were compared and investigated. Microstructure of Sn–0.7Cu alloy exhibited a eutectic matrix composed of primary β-Sn dendrites with a fine dispersion of Cu6Sn5 intermetallics whereas microstructure of SAC0307 alloy exhibited coarser Cu6Sn5 and finer Ag3Sn precipitates of IMCs with decreased tin dendrites. Contact angles ranging from 22° to 26° were obtained for Sn–0.7Cu solder solidified on substrate surface whereas for SAC0307 solder alloy contact angles were found to be in the range of 20° to 22°. Sn–0.7Cu solder/substrate interfacial region exhibited faceted (Cu, Ni)6Sn5 IMCs protruding into the solder matrix and a small amount of (Cu, Ni)3Sn4 intermetallics at the interface. SAC0307 solder/substrate interfacial region showed mainly (Cu, Ni)3Sn4 intermetallics adjacent to the coating layer and (Cu, Ni)6Sn5 IMCs in the solder matrix. The improvement in the wettability of SAC0307 solder alloy on substrate surface is attributed to the formation of cylindrical shape (Cu,Ni)6Sn5 and a layer of (Cu, Ni)3Sn4 IMCs at the interface.

Keywords: Lead-free solder, wetting, contact angle, intermetallics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2549
27 Effect of Precursors Aging Time on the Photocatalytic Activity of ZnO Thin Films

Authors: N. Kaneva, A. Bojinova, K. Papazova

Abstract:

Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15 and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied in the photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction, occurring on the surface of the films and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.

Keywords: ZnO thin films, sol-gel, photocatalysis, aging time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
26 Theoretical Modeling and Experimental Study of Combustion and Performance Characteristics of Biodiesel in Turbocharged Low Heat Rejection D.I Diesel Engine

Authors: B.Rajendra Prasath, P.Tamilporai, Mohd.F.Shabir

Abstract:

An effort has been taken to simulate the combustion and performance characteristics of biodiesel fuel in direct injection (D.I) low heat rejection (LHR) diesel engine. Comprehensive analyses on combustion characteristics such as cylinder pressure, peak cylinder pressure, heat release and performance characteristics such as specific fuel consumption and brake thermal efficiency are carried out. Compression ignition (C.I) engine cycle simulation was developed and modified in to LHR engine for both diesel and biodiesel fuel. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. A gas-wall heat transfer calculations are based on the ANNAND-s combined heat transfer model with instantaneous wall temperature to analyze the effect of coating on heat transfer. The simulated results are validated by conducting the experiments on the test engine under identical operating condition on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha oil) blended with diesel and used in both conventional and LHR engine. The simulated combustion and performance characteristics results are found satisfactory with the experimental value.

Keywords: Biodiesel, Direct injection, Low heat rejection, Turbocharged engine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775
25 Effect of Chromium Behavior on Mechanical and Electrical Properties of P/M Copper-Chromium Alloy Dispersed with VGCF

Authors: Hisashi Imai, Kuan-Yu Chen, Katsuyoshi Kondoh, Hung-Yin Tsai, Junko Umeda

Abstract:

Microstructural and electrical properties of Cu-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity.

Keywords: Powder metallurgy Cu-Cr alloy powder, vapor-grown carbon fiber, electrical conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
24 Application of Stabilized Polyaniline Microparticles for Better Protective Ability of Zinc Coatings

Authors: N. Boshkova, K. Kamburova, N. Tabakova, N. Boshkov, Ts. Radeva

Abstract:

Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. In this work, the preparation of stable suspensions of colloidal PANI-SiO2 particles, suitable for obtaining of composite anticorrosive coating on steel, is described. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO2 particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO2 particles’ suspension against aggregation is realized at pH>5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO2 particles. The PANI-SiO2 particles are incorporated by electrodeposition into the metal matrix of zinc in order to obtain composite (hybrid) coatings. The latter are aimed to ensure sacrificial protection of steel mainly in aggressive media leading to local corrosion damages. The surface morphology of the composite zinc coatings is investigated with SEM. The influence of PANI-SiO2 particles on the cathodic and anodic processes occurring in the starting electrolyte for obtaining of the coatings is followed with cyclic voltammetry. The electrochemical and corrosion behavior is evaluated with potentiodynamic polarization curves and polarization resistance measurements. The beneficial effect of the stabilized PANI-SiO2 particles for the increased protective ability of the composites is commented and discussed.

Keywords: Corrosion, polyaniline particles, zinc, protective ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
23 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, Thermophoresis, Diffusiophoresis, Brownian motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
22 Material Analysis for Temple Painting Conservation in Taiwan

Authors: Chen-Fu Wang, Lin-Ya Kung

Abstract:

For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.

Keywords: Temple painting, painting material, conservation, FT-IR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
21 A CFD Study of Sensitive Parameters Effect on the Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun

Authors: S. Hossainpour, A. R. Binesh

Abstract:

High-velocity oxygen fuel (HVOF) thermal spraying uses a combustion process to heat the gas flow and coating material. A computational fluid dynamics (CFD) model has been developed to predict gas dynamic behavior in a HVOF thermal spray gun in which premixed oxygen and propane are burnt in a combustion chamber linked to a parallel-sided nozzle. The CFD analysis is applied to investigate axisymmetric, steady-state, turbulent, compressible, chemically reacting, subsonic and supersonic flow inside and outside the gun. The gas velocity, temperature, pressure and Mach number distributions are presented for various locations inside and outside the gun. The calculated results show that the most sensitive parameters affecting the process are fuel-to-oxygen gas ratio and total gas flow rate. Gas dynamic behavior along the centerline of the gun depends on both total gas flow rate and fuel-to-oxygen gas ratio. The numerical simulations show that the axial gas velocity and Mach number distribution depend on both flow rate and ratio; the highest velocity is achieved at the higher flow rate and most fuel-rich ratio. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the HVOF system design, optimization and performance analysis.

Keywords: HVOF, CFD, gas dynamics, thermal spray, combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
20 Generation of Catalytic Films of Zeolite Y and ZSM-5 on FeCrAlloy Metal

Authors: Rana Th. A. Al-Rubaye, Arthur A. Garforth

Abstract:

This work details the generation of thin films of structured zeolite catalysts (ZSM–5 and Y) onto the surface of a metal substrate (FeCrAlloy) using in-situ hydrothermal synthesis. In addition, the zeolite Y is post-synthetically modified by acidified ammonium ion exchange to generate US-Y. Finally the catalytic activity of the structured ZSM-5 catalyst films (Si/Al = 11, thickness 146 0m) and structured US–Y catalyst film (Si/Al = 8, thickness 230m) were compared with the pelleted powder form of ZSM–5 and USY catalysts of similar Si/Al ratios. The structured catalyst films have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-onalloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550oC). The cracking of n–heptane over the pellets and structured catalysts for both ZSM–5 and Y zeolite showed very similar product selectivities for similar amounts of catalyst with an apparent activation energy of around 60 kJ mol-1. This paper demonstrates that structured catalysts can be manufactured with excellent zeolite adherence and when suitably activated/modified give comparable cracking results to the pelleted powder forms. These structured catalysts will improve temperature distribution in highly exothermic and endothermic catalysed processes.

Keywords: FeCrAlloy, Structured catalyst, and Zeolite Y, Zeolite ZSM-5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184
19 Physical and Electrical Characterization of ZnO Thin Films Prepared by Sol-Gel Method

Authors: Mohammad Reza Tabatabaei, Ali Vaseghi Ardekani

Abstract:

In this paper, Zinc Oxide (ZnO) thin films are deposited on glass substrate by sol-gel method. The ZnO thin films with well defined orientation were acquired by spin coating of zinc acetate dehydrate monoethanolamine (MEA), de-ionized water and isopropanol alcohol. These films were pre-heated at 275°C for 10 min and then annealed at 350°C, 450°C and 550°C for 80 min. The effect of annealing temperature and different thickness on structure and surface morphology of the thin films were verified by Atomic Force Microscopy (AFM). It was found that there was a significant effect of annealing temperature on the structural parameters of the films such as roughness exponent, fractal dimension and interface width. Thin films also were characterizied by X-ray Diffractometery (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure and show the c-axis grain orientation. Increasing annealing temperature increased the crystallite size and the c-axis orientation of the film after 450°C. Also In this study, ZnO thin films in different thickness have been prepared by sol-gel method on the glass substrate at room temperature. The thicknesses of films are 100, 150 and 250 nm. Using fractal analysis, morphological characteristics of surface films thickness in amorphous state were investigated. The results show that with increasing thickness, surface roughness (RMS) and lateral correlation length (ξ) are decreased. Also, the roughness exponent (α) and growth exponent (β) were determined to be 0.74±0.02 and 0.11±0.02, respectively.

Keywords: ZnO, Thin film, Fractal analysis, Morphology, AFM, annealing temperature, different thickness, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3488
18 Hybrid Energy Harvesting System with Energy Storage Management

Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia

Abstract:

In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.

Keywords: Supercapacitors, energy storage, electronic overvoltage protection, energy harvesting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12
17 Waste-Based Surface Modification to Enhance Corrosion Resistance of Aluminium Bronze Alloy

Authors: Wilson Handoko, Farshid Pahlevani, Isha Singla, Himanish Kumar, Veena Sahajwalla

Abstract:

Aluminium bronze alloys are well known for their superior abrasion, tensile strength and non-magnetic properties, due to the co-presence of iron (Fe) and aluminium (Al) as alloying elements and have been commonly used in many industrial applications. However, continuous exposure to the marine environment will accelerate the risk of a tendency to Al bronze alloys parts failures. Although a higher level of corrosion resistance properties can be achieved by modifying its elemental composition, it will come at a price through the complex manufacturing process and increases the risk of reducing the ductility of Al bronze alloy. In this research, the use of ironmaking slag and waste plastic as the input source for surface modification of Al bronze alloy was implemented. Microstructural analysis conducted using polarised light microscopy and scanning electron microscopy (SEM) that is equipped with energy dispersive spectroscopy (EDS). An electrochemical corrosion test was carried out through Tafel polarisation method and calculation of protection efficiency against the base-material was determined. Results have indicated that uniform modified surface which is as the result of selective diffusion process, has enhanced corrosion resistance properties up to 12.67%. This approach has opened a new opportunity to access various industrial utilisations in commercial scale through minimising the dependency on natural resources by transforming waste sources into the protective coating in environmentally friendly and cost-effective ways.

Keywords: Aluminium bronze, waste-based surface modification, Tafel polarisation, corrosion resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
16 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics

Authors: S. M. Giripunje, Shikha Jindal

Abstract:

Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.

Keywords: Graphene, mobility, nanocomposites, photovoltaics, quantum dots, zinc sulphide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
15 Hybrid Recovery of Copper and Silver from PV Ribbon and Ag Finger of EOL Solar Panels

Authors: T. Patcharawit, C. Kansomket, N. Wongnaree, W. Kritsrikan, T. Yingnakorn, S. Khumkoa

Abstract:

Recovery of pure copper and silver from end-of-life photovoltaic (PV) panels was investigated in this paper using an effective hybrid pyro-hydrometallurgical process. In the first step of waste treatment, solar panel waste was first dismantled to obtain a PV sheet to be cut and calcined at 500 °C, to separate out PV ribbon from glass cullet, ash, and volatile while the silicon wafer containing silver finger was collected for recovery. In the second step of metal recovery, copper recovery from PV ribbon was via 1-3 M HCl leaching with SnCl₂ and H₂O₂ additions in order to remove the tin-lead coating on the ribbon. The leached copper band was cleaned and subsequently melted as an anode for the next step of electrorefining. Stainless steel was set as the cathode with CuSO₄ as an electrolyte, and at a potential of 0.2 V, high purity copper of 99.93% was obtained at 96.11% recovery after 24 hours. For silver recovery, the silicon wafer containing silver finger was leached using HNO₃ at 1-4 M in an ultrasonic bath. In the next step of precipitation, silver chloride was then obtained and subsequently reduced by sucrose and NaOH to give silver powder prior to oxy-acetylene melting to finally obtain pure silver metal. The integrated recycling process is considered to be economical, providing effective recovery of high purity metals such as copper and silver while other materials such as aluminum, copper wire, glass cullet can also be recovered to be reused commercially. Compounds such as PbCl₂ and SnO₂ obtained can also be recovered to enter the market.

Keywords: Electrorefining, leaching, calcination, PV ribbon, silver finger, solar panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487
14 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc- dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution at 100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface; finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the Scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05 % phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: Scanning Electron Microscopy (SEM), ZDDP, catalysts, PTFE, friction, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
13 Ingenious Use of Hypo Sludge in M25 Concrete

Authors: Abhinandan Singh Gill

Abstract:

Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.

Keywords: Concrete, sludge waste, hypo sludge, supplementary cementitious material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
12 Mechanical and Morphological Properties of Polypropylene and High Density Polyethylene Matrix Composites Reinforced with Surface Modified Nano Sized TiO2 Particles

Authors: Mirigul Altan, Huseyin Yildirim

Abstract:

Plastics occupy wide place in the applications of automotive, electronics and house goods. Especially reinforced plastics become popular because of their high strength besides their advantages of low weight and easy manufacturability. In this study, mechanical and morphological properties of polypropylene (PP) and high density polyethylene (HDPE) matrix composites reinforced with surface modified nano titan dioxide (TiO2) particles were investigated. Surface modification was made by coating the nano powders with maleic anhydride grafted styrene ethylene butylene styrene (SEBS-g-MA) and silane, respectively. After surface modification, PP/TiO2 and HDPE/TiO2 composites were obtained by using twin screw extruder at titan dioxide loading of 1 wt.%, 3 wt.% and 5 wt.%. Effects of surface modification were determined by thermal and morphological analysis. SEBS-g-MA provided bridging effect between TiO2 particles and polymer matrix while silane was effective as a dispersant. Depending on that, homogenous structures without agglomeration were obtained. Mechanical tests were performed on the injection moldings of the composites for obtaining the impact strength, tensile strength, stress at break, elongation and elastic modulus. Reinforced HDPE and PP moldings gave higher tensile strength and elastic modulus due to the rigid structure of TiO2. Slight increment was seen in stress at break. Elongation and impact strength decreased due to the stiffness of the nano titan dioxide.

Keywords: High density polyethylene, mechanical properties, nano TiO2, polypropylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3893
11 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures

Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen

Abstract:

Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.

Keywords: Contact angle, contact angle hysteresis, contact time, superhydrophobic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
10 Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling

Authors: S. Y. Lin, C. H. Kuan, C. H. She, W. T. Wang

Abstract:

In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation. 

Keywords: Glass-ceramic, ultrasonic assisted machining, cutting performance, edge-indentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
9 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning

Authors: Gaurav D. Sonawane, Vikas G. Sargade

Abstract:

The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.

Keywords: Cutting temperatures, DSS2205, dry turning, HiPIMS, surface integrity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
8 Seed Dressing and Foliar Spray of Green Bean (Phaseolus vulgaris L.) with Essential Oils and Disinfectants for Suppressing Root Rot and Wilt Incidence under Field Conditions

Authors: N. S. El-Mougy, M. M. Abdel-Kader, H. M. Abouelnasr

Abstract:

The efficacy of two essential oils applied as a bean seed dressing followed by seedlings foliar spray with four commercial disinfectants against root rot and wilt incidence was evaluated under field conditions. The essential oils, grape seed and peppermint oils and the disinfectants, Gold, Revarest, Klenva, Malva were applied. Chitosan and the fungicide Topsin-M were used as comparison treatment. Essential oils individually or combined with disinfectants were applied as a bean seed dressing. Furthermore, emerged bean plants were sprayed with the same treatments. Under laboratory conditions, growth inhibition effect was observed for the isolated, tested fungi R. solani and F. oxysporum when exposed to essential oils individually or combined with disinfectants. A high inhibitor effect was recorded for peppermint followed by grape seed oils. Concentrations of 1% and 2% of chitosan as well as Topsin M at 400 ppm showed complete reduction (100%) in the two fungal growths. Under field conditions, the obtained results showed that the applied treatments of chitosan had a superior effect on root rot and wilt disease incidence compared with other tested treatments. It was found that seed coating treatment provides good protection of emerged green bean seeds against the root pathogens attack compared with the fungicide and control treatments. Also, the application of seed dressing with essential oils accompanied by seedling spray demonstrated similar results. It was observed that essential oils had an enhancing effect against disease incidence when combined with disinfectants compared with their application. The obvious yield increase was significantly higher in all applied treatments than in fungicide and control.

Keywords: Bean, disinfectants, essential oils, root rot, wilt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
7 Low Sulfur Diesel Like Fuel Oil from Quick Remediation Process of Waste Oil Sludge

Authors: Isam A. H. Al Zubaidi

Abstract:

Low sulfur diesel like fuel oil was produced from a quick remediation process of waste oil sludge (WOS). This quick process will reduce the volume of the WOS in petroleum refineries as well as oil fields by transferring the waste to more beneficial product. The practice includes mixing process of WOS with commercial diesel fuel. Different ratios of WOS to diesel fuel were prepared ranging 1:1 to 20:1 by mass. The mixture was continuously mixed for 10 minutes using a bench-type overhead stirrer, and followed by the filtration process to separate the soil waste from filtrate oil product. The quantity and the physical properties of the oil filtrate were measured. It was found that the addition of up to 15% WOS to diesel fuel was accepted without dramatic changes to the properties of diesel fuel. The amount of WOS was decreased by about 60% by mass. This means that about 60% of the mass of sludge was recovered as light fuel oil. The physical properties of the resulting fuel from 10% sludge mixing ratio showed that the specific gravity, ash content, carbon residue, asphaltene content, viscosity, diesel index, cetane number, and calorific value were affected slightly. The color was changed to light black. The sulfur content was increased also. This requires another process to reduce the sulfur content of resulting light fuel. A desulfurization process was achieved using adsorption techniques with activated biomaterial to reduce the sulfur content to acceptable limits. Adsorption process by ZnCl2 activated date palm kernel powder was effective for improvement of the physical properties of diesel like fuel. The final sulfur content was increased to 0.185 wt%. This diesel like fuel can be used in all tractors, buses, tracks inside and outside the refineries. The solid remaining seems to be smooth and can be mixed with asphalt mixture for asphalting the roads or can be used with other materials as asphalt coating material for constructed buildings. Through this process, valuable fuel has been recovered, and the amount of waste material had decreased.

Keywords: Oil sludge, diesel fuel, blending process, filtration process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 343
6 Influence of Thermo-fluid-dynamic Parameters on Fluidics in an Expanding Thermal Plasma Deposition Chamber

Authors: G. Zuppardi, F. Romano

Abstract:

Technology of thin film deposition is of interest in many engineering fields, from electronic manufacturing to corrosion protective coating. A typical deposition process, like that developed at the University of Eindhoven, considers the deposition of a thin, amorphous film of C:H or of Si:H on the substrate, using the Expanding Thermal arc Plasma technique. In this paper a computing procedure is proposed to simulate the flow field in a deposition chamber similar to that at the University of Eindhoven and a sensitivity analysis is carried out in terms of: precursor mass flow rate, electrical power, supplied to the torch and fluid-dynamic characteristics of the plasma jet, using different nozzles. To this purpose a deposition chamber similar in shape, dimensions and operating parameters to the above mentioned chamber is considered. Furthermore, a method is proposed for a very preliminary evaluation of the film thickness distribution on the substrate. The computing procedure relies on two codes working in tandem; the output from the first code is the input to the second one. The first code simulates the flow field in the torch, where Argon is ionized according to the Saha-s equation, and in the nozzle. The second code simulates the flow field in the chamber. Due to high rarefaction level, this is a (commercial) Direct Simulation Monte Carlo code. Gas is a mixture of 21 chemical species and 24 chemical reactions from Argon plasma and Acetylene are implemented in both codes. The effects of the above mentioned operating parameters are evaluated and discussed by 2-D maps and profiles of some important thermo-fluid-dynamic parameters, as per Mach number, velocity and temperature. Intensity, position and extension of the shock wave are evaluated and the influence of the above mentioned test conditions on the film thickness and uniformity of distribution are also evaluated.

Keywords: Deposition chamber, Direct Simulation Mote Carlo method (DSMC), Plasma chemistry, Rarefied gas dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
5 Biomolecules Based Microarray for Screening Human Endothelial Cells Behavior

Authors: Adel Dalilottojari, Bahman Delalat, Frances J. Harding, Michaelia P. Cockshell, Claudine S. Bonder, Nicolas H. Voelcker

Abstract:

Endothelial Progenitor Cell (EPC) based therapies continue to be of interest to treat ischemic events based on their proven role to promote blood vessel formation and thus tissue re-vascularisation. Current strategies for the production of clinical-grade EPCs requires the in vitro isolation of EPCs from peripheral blood followed by cell expansion to provide sufficient quantities EPCs for cell therapy. This study aims to examine the use of different biomolecules to significantly improve the current strategy of EPC capture and expansion on collagen type I (Col I). In this study, four different biomolecules were immobilised on a surface and then investigated for their capacity to support EPC capture and proliferation. First, a cell microarray platform was fabricated by coating a glass surface with epoxy functional allyl glycidyl ether plasma polymer (AGEpp) to mediate biomolecule binding. The four candidate biomolecules tested were Col I, collagen type II (Col II), collagen type IV (Col IV) and vascular endothelial growth factor A (VEGF-A), which were arrayed on the epoxy-functionalised surface using a non-contact printer. The surrounding area between the printed biomolecules was passivated with polyethylene glycol-bisamine (A-PEG) to prevent non-specific cell attachment. EPCs were seeded onto the microarray platform and cell numbers quantified after 1 h (to determine capture) and 72 h (to determine proliferation). All of the extracellular matrix (ECM) biomolecules printed demonstrated an ability to capture EPCs within 1 h of cell seeding with Col II exhibiting the highest level of attachment when compared to the other biomolecules. Interestingly, Col IV exhibited the highest increase in EPC expansion after 72 h when compared to Col I, Col II and VEGF-A. These results provide information for significant improvement in the capture and expansion of human EPC for further application.

Keywords: Cardiovascular disease, cell microarray platform, cell therapy, endothelial progenitor cells, high throughput screening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
4 High Efficiency Solar Thermal Collectors Utilization in Process Heat: A Case Study of Textile Finishing Industry

Authors: Gökçen A. Çiftçioğlu, M. A. Neşet Kadırgan, Figen Kadırgan

Abstract:

Solar energy, since it is available every day, is seen as one of the most valuable renewable energy resources. Thus, the energy of sun should be efficiently used in various applications. The most known applications that use solar energy are heating water and spaces. High efficiency solar collectors need appropriate selective surfaces to absorb the heat. Selective surfaces (Selektif-Sera) used in this study are applied to flat collectors, which are produced by a roll to roll cost effective coating of nano nickel layers, developed in Selektif Teknoloji Co. Inc. Efficiency of flat collectors using Selektif-Sera absorbers are calculated in collaboration with Institute for Solar Technik Rapperswil, Switzerland. The main cause of high energy consumption in industry is mostly caused from low temperature level processes. There is considerable effort in research to minimize the energy use by renewable energy sources such as solar energy. A feasibility study will be presented to obtain the potential of solar thermal energy utilization in the textile industry using these solar collectors. For the feasibility calculations presented in this study, textile dyeing and finishing factory located at Kahramanmaras is selected since the geographic location was an important factor. Kahramanmaras is located in the south east part of Turkey thus has a great potential to have solar illumination much longer. It was observed that, the collector area is limited by the available area in the factory, thus a hybrid heating generating system (lignite/solar thermal) was preferred in the calculations of this study to be more realistic. During the feasibility work, the calculations took into account the preheating process, where well waters heated from 15 °C to 30-40 °C by using the hot waters in heat exchangers. Then the preheated water was heated again by high efficiency solar collectors. Economic comparison between the lignite use and solar thermal collector use was provided to determine the optimal system that can be used efficiently. The optimum design of solar thermal systems was studied depending on the optimum collector area. It was found that the solar thermal system is more economic and efficient than the merely lignite use. Return on investment time is calculated as 5.15 years.

Keywords: Solar energy, heating, solar heating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240
3 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths

Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi

Abstract:

Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.

Keywords: Concentration, Resovist, Field strength, Relaxivity, Signal intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
2 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites

Authors: S. Z. A. Zaidi, A. Crosky

Abstract:

Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.  Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.

Keywords: Natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171