Search results for: Composite beams
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 901

Search results for: Composite beams

721 Hydrophobic Characteristics of EPDM Composite Insulators in Simulated Arid Desert Environment

Authors: Yasin Khan

Abstract:

Overhead electrical insulators form an important link in an electric power system. Along with the traditional insulators (i.e. glass and porcelain, etc) presently the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters such temperature, environmental pollution, UV-radiations, etc. which seriously effect their electrical, chemical and hydrophobic properties. The UV radiation level in the central region of Saudi Arabia is high as compared to the IEC standard for the accelerated aging of the composite insulators. Commonly used suspension type of composite EPDM (Ethylene Propylene Diene Monomer) insulator was subjected to accelerated stress aging as per modified IEC standard simulating the inland arid deserts atmospheric condition and also as per IEC-61109 standard. The hydrophobic characteristics were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that EPDM insulator loses it hydrophobic properties proportional to the intensity of UV irradiations and its rate of recovery is also very low as compared to Silicone Rubber insulator.KeywordsEPDM, composite insulators, accelerated aging, hydrophobicity, contact angle.

Keywords: EPDM, composite insulators, accelerated aging, hydrophobicity, contact angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2724
720 Active Fiber Composites for Smart Damping of Doubly Curved Laminated Shells

Authors: Saroj Kumar Sarangi, M. C. Ray

Abstract:

This paper deals with the analysis of active constrained layer damping (ACLD) of doubly curved laminated composite shells using active fiber composite (AFC) materials. The constraining layer of the ACLD treatment has been considered to be made of the AFC materials. A three dimensional energy based finite element model of the smart doubly curved laminated composite shell integrated with a patch of such ACLD treatment has been developed to demonstrate the performance of the patch on enhancing the damping characteristics of the doubly curved laminated composite shells. Particular emphasis has been placed on studying the effect of variation of piezoelectric fiber orientation angle in the constraining AFC layer on the control authority of the ACLD patch.

Keywords: Active constrained layer damping, Active fibercomposites, Finite element modeling, First order shear deformationtheory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
719 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks

Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell

Abstract:

A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1x8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.

Keywords: MM-wave communications, multi-sector array, patch antenna, small cell networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 915
718 Finite Element Modelling of a 3D Woven Composite for Automotive Applications

Authors: Ahmad R. Zamani, Luigi Sanguigno, Angelo R. Maligno

Abstract:

A 3D woven composite, designed for automotive applications, is studied using Abaqus Finite Element (FE) software suite. Python scripts were developed to build FE models of the woven composite in Complete Abaqus Environment (CAE). They can read TexGen or WiseTex files and automatically generate consistent meshes of the fabric and the matrix. A user menu is provided to help define parameters for the FE models, such as type and size of the elements in fabric and matrix as well as the type of matrix-fabric interaction. Node-to-node constraints were imposed to guarantee periodicity of the deformed shapes at the boundaries of the representative volume element of the composite. Tensile loads in three axes and biaxial loads in x-y directions have been applied at different Fibre Volume Fractions (FVFs). A simple damage model was implemented via an Abaqus user material (UMAT) subroutine. Existing tools for homogenization were also used, including voxel mesh generation from TexGen as well as Abaqus Micromechanics plugin. Linear relations between homogenised elastic properties and the FVFs are given. The FE models of composite exhibited balanced behaviour with respect to warp and weft directions in terms of both stiffness and strength.

Keywords: 3D woven composite, meso-scale finite element modelling, homogenisation of elastic material properties, Abaqus Python scripting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858
717 Investigation on the Feasibility of Composite Coil Spring for Automotive Applications

Authors: D. Abdul Budan, T.S. Manjunatha

Abstract:

This paper demonstrates the feasibility of replacing the metal coil spring with the composite coil spring. Three different types of springs were made using glass fiber, carbon fiber and combination of glass fiber and carbon fiber. The objective of the study is to reduce the weight of the spring. According to the experimental results the spring rate of the carbon fiber spring is 34% more than the glass fiber spring and 45% more than the glass fiber/carbon fiber spring. The weight of the carbon fiber spring is 18% less than the glass fiber spring, 15% less than the Glass fiber/carbon fiber spring and 80% less than the steel spring.

Keywords: Carbon fiber, Glass fiber, Helical composite spring, spring rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4556
716 Load Transfer Mechanism Based Unified Strut-and-Tie Modeling for Design of Concrete Beams

Authors: Ahmed, M., Yasser A., Mahmoud H., Ahmed, A., Abdulla M. S., Nazar, S.

Abstract:

Strut-and-Tie Models (STM) for the design of concrete beams, comprising of struts, ties, nodes as the basic tools, is conceptually simple, but its realization for complex concrete structure is not straightforward and depends on flow of internal forces in the structure. STM technique has won wide acceptance for deep member and shear design. STM technique is a unified approach that considers all load effects (bending, axial, shear, and torsion) simultaneously, not just applicable to shear loading only. The present study is to portray Strut-and-Tie Modeling based on Load-Transfer-Mechanisms as a unified method to analyze, design and detailing for deep and slender concrete beams. Three shear span- effective depth ratio (a/ d) are recommended for the modeling of STM elements corresponding to dominant load paths. The study also discusses the research work conduct on effective stress of concrete, tie end anchorage, and transverse reinforcement demand under different load transfer mechanism. It is also highlighted that to make the STM versatile tool for design of beams applicable to all shear spans, the effective stress of concrete and, transverse reinforcement demand, inclined angle of strut, and anchorage requirements of tie bars is required to be correlated with respect to load transfer mechanism. The country code provisions are to be modified and updated to apply for generalized design of concrete deep and slender member using load transfer mechanism based STM technique. Examples available in literature are reanalyzed with refined STM based on load transfer mechanisms and results are compared. It is concluded from the results that proposed approach will require true reinforcement demand depending on dominant force transfer action in concrete beam.

Keywords: Deep member, Load transfer mechanism, Strut-and-Tie Model, Strut, Truss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5945
715 Detection of Defects in CFRP by Ultrasonic IR Thermographic Method

Authors: W. Swiderski

Abstract:

In the paper introduced the diagnostic technique making possible the research of internal structures in composite materials reinforced fibres using in different applications. The main reason of damages in structures of these materials is the changing distribution of load in constructions in the lifetime. Appearing defect is largely complicated because of the appearance of disturbing of continuity of reinforced fibres, binder cracks and loss of fibres adhesiveness from binders. Defect in composite materials is usually more complicated than in metals. At present, infrared thermography is the most effective method in non-destructive testing composite. One of IR thermography methods used in non-destructive evaluation is vibrothermography. The vibrothermography is not a new non-destructive method, but the new solution in this test is use ultrasonic waves to thermal stimulation of materials. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting composite materials will be presented. The ThermoSon computer program for computing 3D dynamic temperature distribuions in anisotropic layered solids with subsurface defects subject to ulrasonic stimulation was used to optimise heating parameters in the detection of subsurface defects in composite materials. The program allows for the analysis of transient heat conduction and ultrasonic wave propagation phenomena in solids. The experiments at MIAT were fulfilled by means of FLIR SC 7600 IR camera. Ultrasonic stimulation was performed with the frequency from 15 kHz to 30 kHz with maximum power up to 2 kW.

Keywords: Composite material, ultrasonic, infrared thermography, non-destructive testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798
714 Thermal Effect on Wave Interaction in Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.

Keywords: Temperature dependent mechanical characteristics, wave propagation properties, damage detection, wave finite element, composite structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181
713 Evaluation of Baking Properties and Sensory Quality of Wheat-Cowpea Flour

Authors: Mohamed A. Ahmed, Lydia J. Campbell

Abstract:

The fortified of soft wheat flour with cowpea flour in bread making was investigated. The Soft wheat flour (SWF) was substituted by cowpea flour at levels of 5, 15 and 20%. The protein content of composite breads ranged from 6.1 – 9.9%. Significant difference was observed in moisture, protein and crude fibre contents of control (wheat bread) and composite bread at 5% addition of cowpea. Water absorption capacities of composite flours increased with increasing levels of cowpea flour in the blend. The specific loaf volume decreased significantly with increased cowpea content of blends. The overall acceptability of the 5% cowpea flour content of composite bread was not significantly different from the control (Soft Wheat-bread) but there is significantly different with increasing the levels of cowpea flour in the blend more than 5%.

Keywords: Cowpea flour, wheat flour, baking properties, sensory quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
712 Static Modeling of the Delamination of a Composite Material Laminate in Mode II

Authors: Y. Madani, H. Achache, B. Boutabout

Abstract:

The purpose of this paper is to analyze numerically by the three-dimensional finite element method, using ABAQUS calculation code, the mechanical behavior of a unidirectional and multidirectional delaminated stratified composite under mechanical loading in Mode II. This study consists of the determination of the energy release rate G in mode II as well as the distribution of equivalent von Mises stresses along the damaged zone by varying several parameters such as the applied load and the delamination length. It allowed us to deduce that the high energy release rate favors delamination at the free edges of a stratified plate subjected to bending.

Keywords: Delamination, energy release rate, finite element method, stratified composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
711 Characterization of an Almond Shell Composite Based on PHBH

Authors: J. Ivorra-Martinez, L. Quiles-Carrillo, J. Gomez-Caturla, T. Boronat, R. Balart

Abstract:

The utilization of almond crop by-products to obtain Poly(3-hydroxybutyrat-co-3-hydroxyhexanoat) (PHBH)-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of Oligomer Lactic Acid (OLA 8) as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.

Keywords: Almond shell, PHBH, composite, polymer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 336
710 Synthesis, Characterization and Impedance Analysis of Polypyrrole/La0.7Ca0.3MnO3 Nanocomposites

Authors: M. G. Smitha, M. V. Murugendrappa

Abstract:

Perovskite manganite La0.7Ca0.3MnO3 was synthesized by Sol-gel method. Polymerization of pyrrole was carried by in-situ polymerization method. The composite of pyrrole (Py)/La0.7Ca0.3MnO3 composite in the presence of oxidizing agent ammonium per sulphate to synthesize polypyrrole (PPy)/La0.7Ca0.3MnO3 (LCM) composite was carried out by the same in-situ polymerization method. The PPy/LCM composites were synthesized with varying compositions like 10, 20, 30, 40, and 50 wt.% of LCM in Py. The surface morphologies of these composites were analyzed by using scanning electron microscope (SEM). The images show that LCM particles are embedded in PPy chain. The impedance measurement of PPy/LCM at different temperature ranges from 30 to 180 °C was studied using impedance analyzer. The study shows that impedance is frequency and temperature dependent and it is found to decrease with increase in frequency and temperature.

Keywords: Polypyrrole, sol gel, impedance, composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178
709 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the Isection. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted in a high shear and almost zero moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: Strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
708 Numerical Prediction of Bearing Strength on Composite Bolted Joint Using Three Dimensional Puck Failure Criteria

Authors: M. S. Meon, M. N. Rao, K-U. Schröder

Abstract:

Mechanical fasteners especially bolting is commonly used in joining carbon-fiber reinforced polymer (CFRP) composite structures due to their good joinability and easy for maintenance characteristics. Since this approach involves with notching, a proper progressive damage model (PDM) need to be implemented and verified to capture existence of damages in the structure. A three dimensional (3D) failure criteria of Puck is established to predict the ultimate bearing failure of such joint. The failure criteria incorporated with degradation scheme are coded based on user subroutine executed in Abaqus. Single lap joint (SLJ) of composite bolted joint is used as target configuration. The results revealed that the PDM adopted here could sufficiently predict the behaviour of composite bolted joint up to ultimate bearing failure. In addition, mesh refinement near holes increased the accuracy of predicted strength as well as computational effort.

Keywords: Bearing strength, bolted joint, degradation scheme, progressive damage model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
707 Comparative Safety Performance Evaluation of Profiled Deck Composite Slab from the Use of Slope-Intercept and Partial Shear Methods

Authors: Izian Abd. Karim, Kachalla Mohammed, Nora Farah A. A. Aziz, Law Teik Hua

Abstract:

The economic use and ease of construction of profiled deck composite slab is marred with the complex and un-economic strength verification required for the serviceability and general safety considerations. Beside these, albeit factors such as shear span length, deck geometries and mechanical frictions greatly influence the longitudinal shear strength, that determines the ultimate strength of profiled deck composite slab, and number of methods available for its determination; partial shear and slope-intercept are the two methods according to Euro-code 4 provision. However, the complexity associated with shear behavior of profiled deck composite slab, the use of these methods in determining the load carrying capacities of such slab yields different and conflicting values. This couple with the time and cost constraint associated with the strength verification is a source of concern that draws more attentions nowadays, the issue is critical. Treating some of these known shear strength influencing factors as random variables, the load carrying capacity violation of profiled deck composite slab from the use of the two-methods defined according to Euro-code 4 are determined using reliability approach, and comparatively studied. The study reveals safety values from the use of m-k method shows good standing compared with that from the partial shear method.

Keywords: Composite slab, first order reliability method, longitudinal shear, partial shear connection, slope-intercept.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
706 The Effects of Bolt Spacing on Composite Shear Wall Behavior

Authors: Amir Ayazi, Hamde Ahmadi, Soheil Shafaei

Abstract:

Composite steel shear wall is a lateral load resisting system which consists of a steel plate with concrete wall attached to one or both sides to prevent it from elastic buckling. The composite behavior is ensured by utilizing high-strength bolts. This paper investigates the effect of distance between bolts, and for this purpose 14 one-story one-bay specimens with various bolts spacing were modeled by finite element code which is developed by the authors. To verify the model, numerical results were compared with a valid experiment which illustrate proper agreement. Results depict increasing the distance between bolts would improve the seismic ever, this increase must be limited, because of large distances will cause widespread buckling of the steel plate in free subpanels between bolts and would result in no improvement. By comparing the results in elastic region, it was observed initial stiffness is not affected by changing the distance.

Keywords: Composite steel shear wall, bolt, buckling, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3090
705 Bamboo Fibre Extraction and Its Reinforced Polymer Composite Material

Authors: P. Zakikhani, R. Zahari, M. T. H. Sultan, D. L. Majid

Abstract:

Natural plant fibres reinforced polymeric composite materials have been used in many fields of our lives to save the environment. Especially, bamboo fibres due to its environmental sustainability, mechanical properties, and recyclability have been utilized as reinforced polymer matrix composite in construction industries. In this review study bamboo structure and three different methods such as mechanical, chemical and combination of mechanical and chemical to extract fibres from bamboo are summarized. Each extraction method has been done base on the application of bamboo. In addition Bamboo fibre is compared with glass fibre from various aspects and in some parts it has advantages over the glass fibre.

Keywords: Bamboo fibres, natural fibres, mechanical extraction, glass fibres.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10236
704 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams

Authors: H. Ozbasaran

Abstract:

Lateral torsional buckling is a global buckling mode which should be considered in design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice for calculation ease which can be obtained by using energy method. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. Accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties and loading case, the hardest step is to determine a proper mode function in application of energy method. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for concentrated load at free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.

Keywords: Buckling mode, cantilever, lateral-torsional buckling, I-beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
703 Experimental Investigation on Shear Behaviour of Fibre Reinforced Concrete Beams Using Steel Fibres

Authors: G. Beulah Gnana Ananthi, A. Jaffer Sathick, M. Abirami

Abstract:

Fibre reinforced concrete (FRC) has been widely used in industrial pavements and non-structural elements such as pipes, culverts, tunnels, and precast elements. The strengthening effect of fibres in the concrete matrix is achieved primarily due to the bridging effect of fibres at the crack interfaces. The workability of the concrete was reduced on addition of high percentages of steel fibres. The optimum percentage of addition of steel fibres varies with its aspect ratio. For this study, 1% addition of steel has resulted to be the optimum percentage for both Hooked and Crimped Steel Fibres and was added to the beam specimens. The fibres restrain efficiently the cracks and take up residual stresses beyond the cracking. In this sense, diagonal cracks are effectively stitched up by fibres crossing it. The failure of beams within the shear failure range changed from shear to flexure in the presence of sufficient steel fibre quantity. The shear strength is increased with the addition of steel fibres and had exceeded the enhancement obtained with the transverse reinforcement. However, such increase is not directly in proportion with the quantity of fibres used. Considering all the clarification made in the present experimental investigation, it is concluded that 1% of crimped steel fibres with an aspect ratio of 50 is the best type of steel fibres for replacement of transverse stirrups in high strength concrete beams when compared to the steel fibres with hooked ends.

Keywords: Fibre reinforced concrete, steel fibre, shear strength, crack pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
702 The Effects of System Change on Buildings Equipped with Structural Systems with the Sandwich Composite Wall with J-Hook Connectors and Reinforced Concrete Shear Walls

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

The sandwich composite walls (SCSSC) have more ductility and energy dissipation than conventional reinforced concrete shear walls. SCSSCs have acceptable compressive, shear, in-plane bending, and out-of-plane bending capacities. The use of sandwich-composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. In this paper, incremental dynamic analyses for 10- and 15-story steel structures were performed under seven far-faults by OpenSees. The demand values of 10- and 15-story models are reduced by up to 32% and 45%, respectively, while the structural system change from shear walls (SW) to SCSSC.

Keywords: Sandwich composite wall, SCSSC, fling step, fragility curve, IDA, inter story drift ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220
701 Efficient Moment Frame Structure

Authors: Mircea I. Pastrav, Cornelia Baera, Florea Dinu

Abstract:

A different concept for designing and detailing of reinforced concrete precast frame structures is analyzed in this paper. The new detailing of the joints derives from the special hybrid moment frame joints. The special reinforcements of this alternative detailing, named modified special hybrid joint, are bondless with respect to both column and beams. Full scale tests were performed on a plan model, which represents a part of 5 story structure, cropped in the middle of the beams and columns spans. Theoretical approach was developed, based on testing results on twice repaired model, subjected to lateral seismic type loading. Discussion regarding the modified special hybrid joint behavior and further on widening research needed concludes the presentation.

Keywords: Acceptance criteria, modified hybrid joint, repair, seismic loading type.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
700 Preparation and Some Mechanical Properties of Composite Materials Made from Sawdust, Cassava Starch and Natural Rubber Latex

Authors: Apusraporn Prompunjai, Waranyou Sridach

Abstract:

The composite materials were prepared by sawdust, cassava starch and natural rubber latex (NR). The mixtures of 15%w/v gelatinized cassava starch and 15%w/v PVOH were used as the binder of these composite materials. The concentrated rubber latex was added to the mixtures. They were mixed rigorously to the treated sawdust in the ratio of 70:30 until achive uniform dispersion. The batters were subjected to the hot compression moulding at the temperature of 160°C and 3,000 psi pressure for 5 min. The experimental results showed that the mechanical properties of composite materials, which contained the gelatinized cassava starch and PVOH in the ratio of 2:1, 20% NR latex by weight of the dry starch and treated sawdust with 5%NaOH or 1% BPO, were the best. It contributed the maximal compression strength (341.10 + 26.11 N), puncture resistance (8.79 + 0.98 N/mm2) and flexural strength (3.99 + 0.72N/mm2). It is also found that the physicochemical and mechanical properties of composites strongly depends on the interface quality of sawdust, cassava starch and NR latex.

Keywords: Composites, sawdust, cassava starch, natural rubber (NR) latex, surface chemical treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4062
699 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Authors: Zhifeng Xu, Zhongfan Chen

Abstract:

A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.

Keywords: Cold-formed steel, composite wall, foamed concrete, axial behavior test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
698 Effects of Opening Shape and Location on the Structural Strength of R.C. Deep Beams with Openings

Authors: Haider M. Alsaeq

Abstract:

This research investigates the effects of the opening shape and location on the structural behavior of reinforced concrete deep beam with openings, while keeping the opening size unchanged. The software ANSYS 12.1 is used to handle the nonlinear finite element analysis. The ultimate strength of reinforced concrete deep beam with opening obtained by ANSYS 12.1 shows fair agreement with the experimental results, with a difference of no more than 20%. The present work concludes that the opening location has much more effect on the structural strength than the opening shape. It was concluded that placing the openings near the upper corners of the deep beam may double the strength, and the use of a rectangular narrow opening, with the long sides in the horizontal direction, can save up to 40% of structural strength of the deep beam.

Keywords: Deep Beams, Finite Element, Opening, Reinforced Concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4233
697 Comparison of Composite Programming and Compromise Programming for Aircraft Selection Problem Using Multiple Criteria Decision Making Analysis Method

Authors: C. Ardil

Abstract:

In this paper, the comparison of composite programming and compromise programming for the aircraft selection problem is discussed using the multiple criteria decision analysis method. The decision making process requires the prior definition and fulfillment of certain factors, especially when it comes to complex areas such as aircraft selection problems. The proposed technique gives more efficient results by extending the composite programming and compromise programming, which are widely used in modeling multiple criteria decisions. The proposed model is applied to a practical decision problem for evaluating and selecting aircraft problems.A selection of aircraft was made based on the proposed approach developed in the field of multiple criteria decision making. The model presented is solved by using the following methods: composite programming, and compromise programming. The importance values of the weight coefficients of the criteria are calculated using the mean weight method. The evaluation and ranking of aircraft are carried out using the composite programming and compromise programming methods. In order to determine the stability of the model and the ability to apply the developed composite programming and compromise programming approach, the paper analyzes its sensitivity, which involves changing the value of the coefficient λ and q in the first part. The second part of the sensitivity analysis relates to the application of different multiple criteria decision making methods, composite programming and compromise programming. In addition, in the third part of the sensitivity analysis, the Spearman correlation coefficient of the ranks obtained was calculated which confirms the applicability of all the proposed approaches.

Keywords: composite programming, compromise programming, additive weighted model, multiplicative weighted model, multiple criteria decision making analysis, MCDMA, aircraft selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621
696 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem

Authors: Yu T. Tsai, Jin H. Huang

Abstract:

In this paper, the specific sound Transmission Loss (TL) of the Laminated Composite Plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.

Keywords: Sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
695 Influence of Fibre Content on Crack Propagation Rate in Fibre-Reinforced Concrete Beams

Authors: Amir M. Alani, Morteza Aboutalebi, Martin J. King

Abstract:

Experimental study on the influence of fibre content on crack behaviour and propagation in synthetic-fibre reinforced beams has been reported in this paper. The tensile behaviour of metallic fibre concrete is evaluated in terms of residual flexural tensile strength values determined from the load-crack mouth opening displacement curve or load-deflection curve obtained by applying a centre-point load on a simply supported notched prism. The results achieved demonstrate that an increase in fibre content has an almost negligible effect on compressive and tensile splitting properties, causes a marginal increment in flexural tensile strength and increasesthe Re3 value.

Keywords: Fibre-Reinforced Concrete, Crack, Flexural Test, Ductility, Fibre Content, Experimental Study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3697
694 RBF- based Meshless Method for Free Vibration Analysis of Laminated Composite Plates

Authors: Jeeoot Singh, Sandeep Singh, K. K. Shukla

Abstract:

The governing differential equations of laminated plate utilizing trigonometric shear deformation theory are derived using energy approach. The governing differential equations discretized by different radial basis functions are used to predict the free vibration behavior of symmetric laminated composite plates. Effect of orthotropy and span to thickness ratio on frequency parameter of simply supported laminated plate is presented. Numerical results show the accuracy and good convergence of radial basis functions.

Keywords: Composite plates, Meshfree method, free vibration, Shear deformation, RBFs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
693 Studies on Automatic Measurement Technology for Surface Braided Angle of Three-Dimensional Braided Composite Material Performs

Authors: Na Li

Abstract:

This paper describes a new measuring algorithm for three-dimensional (3-D) braided composite material .Braided angle is an important parameter of braided composites. The objective of this paper is to present an automatic measuring system. In the paper, the algorithm is performed by using vcµ6.0 language on PC. An advanced filtered algorithm for image of 3-D braided composites material performs has been developed. The procedure is completely automatic and relies on the gray scale information content of the images and their local wavelet transform modulus maxims. Experimental results show that the proposed method is feasible. The algorithm was tested on both carbon-fiber and glass-fiber performs.

Keywords: Three-Dimensional composite material, Mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
692 Effect of Carbon Nanotube Reinforcement in Polymer Composite Plates under Static Loading

Authors: S. Madhu, V. V. Subba Rao

Abstract:

In the implementation of Carbon Nanotube Reinforced Polymer matrix Composites in structural applications, deflection and stress analysis are important considerations. In the present study, a multi scale analysis of deflection and stress analysis of carbon nanotube (CNT) reinforced polymer composite plates is presented. A micromechanics model based on the Mori-Tanaka method is developed by introducing straight CNTs aligned in one direction. The effect of volume fraction and diameter of CNTs on plate deflection and the stresses are investigated using classical laminate plate theory (CLPT). The study is primarily conducted with the intention of observing the suitability of CNT reinforced polymer composite plates under static loading for structural applications.

Keywords: Carbon Nanotube, Micromechanics, Composite plate, Multi-scale analysis, Classical Laminate Plate Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321