Characterization of an Almond Shell Composite Based on PHBH
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32813
Characterization of an Almond Shell Composite Based on PHBH

Authors: J. Ivorra-Martinez, L. Quiles-Carrillo, J. Gomez-Caturla, T. Boronat, R. Balart

Abstract:

The utilization of almond crop by-products to obtain Poly(3-hydroxybutyrat-co-3-hydroxyhexanoat) (PHBH)-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of Oligomer Lactic Acid (OLA 8) as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.

Keywords: Almond shell, PHBH, composite, polymer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 333

References:


[1] Li, X., Liu, Y., Hao, J., & Wang, W. (2018). Study of almond shell characteristics. Materials, 11(9), 1782.
[2] Nabais, J. M. V., Laginhas, C. E. C., Carrott, P. J. M., & Carrott, M. R. (2011). Production of activated carbons from almond shell. Fuel Processing Technology, 92(2), 234-240.
[3] Ibáñez García, A., Martínez García, A., & Ferrándiz Bou, S. (2020). Study of the influence of the almond shell variety on the mechanical properties of starch-based polymer biocomposites. Polymers, 12(9), 2049.
[4] Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., & Bouhfid, R. (2013). Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Materials & Design, 51, 225-230.
[5] Tan, D., Wang, Y., Tong, Y., & Chen, G. Q. (2021). Grand challenges for industrializing polyhydroxyalkanoates (PHAs). Trends in Biotechnology, 39(9), 953-963.
[6] Amasawa, E., Yamanishi, T., Nakatani, J., Hirao, M., & Sato, S. (2021). Climate change implications of bio-based and marine-biodegradable plastic: evidence from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Environmental Science & Technology, 55(5), 3380-3388.
[7] Li, D., Fu, J., & Ma, X. (2020). Improvement in thermal, mechanical, and barrier properties of biocomposite of poly (3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)/modified nano‐SiO2. Polymer Composites, 41(1), 381-390.
[8] Nanni, A., & Messori, M. (2020). Effect of the Wine Lees Wastes as Cost‐advantage and Natural Fillers on the Thermal and Mechanical Properties of Poly (3‐hydroxybutyrate‐co‐hydroxyhexanoate)(PHBH) and Poly (3‐hydroxybutyrate‐co‐hydroxyvalerate)(PHBV). Journal of Applied Polymer Science, 137(28), 48869.
[9] Erdogan, S., & Huner, U. (2018). Physical and mechanical properties of PP composites based on different types of lignocellulosic fillers. Journal of Wuhan University of Technology-Mater. Sci. Ed., 33(6), 1298-1307.
[10] Luzi, F., Dominici, F., Armentano, I., Fortunati, E., Burgos, N., Fiori, S., ... & Torre, L. (2019). Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydrate polymers, 223, 115131.
[11] Singh, S., & Mohanty, A. K. (2007). Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation. Composites Science and Technology, 67(9), 1753-1763.
[12] Öner, M., Kızıl, G., Keskin, G., Pochat-Bohatier, C., & Bechelany, M. (2018). The Effect of Boron Nitride on the Thermal and Mechanical Properties of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Nanomaterials, 8(11), 940.
[13] Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The effect of varying almond shell flour (ASF) loading in composites with poly (butylene succinate (PBS) matrix compatibilized with maleinized linseed oil (MLO). Materials, 11(11), 2179.
[14] Essabir, H., Bensalah, M. O., Rodrigue, D., & Bouhfid, R. (2016). Biocomposites based on Argan nut shell and a polymer matrix: effect of filler content and coupling agent. Carbohydrate Polymers, 143, 70-83.
[15] Li, X., Liu, Y., Hao, J., & Wang, W. (2018). Study of almond shell characteristics. Materials, 11(9), 1782.
[16] Chieng, B. W., Ibrahim, N. A., Then, Y. Y., & Loo, Y. Y. (2014). Epoxidized vegetable oils plasticized poly (lactic acid) biocomposites: mechanical, thermal and morphology properties. Molecules, 19(10), 16024-16038.
[17] Dehouche, N., Kaci, M., Idres, C., & Bruzaud, S. (2021, April). Filler Content Effect on Water Uptake and Thermal Stability of Poly (3‐Hydroxybutyrate‐Co‐3‐Hydroxyhexanoate)/Microcrystalline Cellulose Biocomposites. In Macromolecular Symposia (Vol. 396, No. 1, p. 2000233).
[18] Sahai, R. S. N., & Pardeshi, R. A. (2021). Comparative study of effect of different coupling agent on mechanical properties and water absorption on wheat straw-reinforced polystyrene composites. Journal of Thermoplastic Composite Materials, 34(4), 433-450.