Search results for: scale of knowledge
1152 A Video-Based Observation and Analysis Method to Assess Human Movement and Behaviour in Crowded Areas
Authors: Shahrol Mohamaddan, Keith Case, Ana Sakura Zainal Abidin
Abstract:
Human movement in the real world provides important information for developing human behaviour models and simulations. However, it is difficult to assess ‘real’ human behaviour since there is no established method available. As part of the AUNTSUE (Accessibility and User Needs in Transport – Sustainable Urban Environments) project, this research aimed to propose a method to assess human movement and behaviour in crowded areas. The method is based on the three major steps of video recording, conceptual behavior modelling and video analysis. The focus is on individual human movement and behaviour in normal situations (panic situations are not considered) and the interactions between individuals in localized areas. Emphasis is placed on gaining knowledge of characteristics of human movement and behaviour in the real world that can be modelled in the virtual environment.
Keywords: Video observation, Human movement, Behaviour, Crowds, Ergonomics, AUNT-SUE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22451151 Multi-View Neural Network Based Gait Recognition
Authors: Saeid Fazli, Hadis Askarifar, Maryam Sheikh Shoaie
Abstract:
Human identification at a distance has recently gained growing interest from computer vision researchers. Gait recognition aims essentially to address this problem by identifying people based on the way they walk [1]. Gait recognition has 3 steps. The first step is preprocessing, the second step is feature extraction and the third one is classification. This paper focuses on the classification step that is essential to increase the CCR (Correct Classification Rate). Multilayer Perceptron (MLP) is used in this work. Neural Networks imitate the human brain to perform intelligent tasks [3].They can represent complicated relationships between input and output and acquire knowledge about these relationships directly from the data [2]. In this paper we apply MLP NN for 11 views in our database and compare the CCR values for these views. Experiments are performed with the NLPR databases, and the effectiveness of the proposed method for gait recognition is demonstrated.Keywords: Human motion analysis, biometrics, gait recognition, principal component analysis, MLP neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21051150 Fast Adjustable Threshold for Uniform Neural Network Quantization
Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev
Abstract:
The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.Keywords: Distillation, machine learning, neural networks, quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7321149 Self-Efficacy Perceptions and the Attitudes of Prospective Teachers towards Assessment and Evaluation
Authors: Münevver Başman, Ezel Tavşancıl
Abstract:
Making the right decisions about students depends on teachers’ use of the assessment and evaluation techniques effectively. In order to do that, teachers should have positive attitudes and adequate self-efficacy perception towards assessment and evaluation. The purpose of this study is to investigate relationship between self-efficacy perception and the attitudes of prospective teachers towards assessment and evaluation and what kind of differences these issues have in terms of a variety of demographic variables. The study group consisted of 277 prospective teachers who have been studying in different departments of Marmara University, Faculty of Education. In this study, ‘Personal Information Form’, ‘A Perceptual Scale for Measurement and Evaluation of Prospective Teachers Self-Efficacy in Education’ and ‘Attitudes toward Educational Measurement Inventory’ are applied. As a result, positive correlation was found between self-efficacy perceptions and the attitudes of prospective teachers towards assessment and evaluation. Considering different departments, there is a significant difference between the mean score of attitudes of prospective teachers and between the mean score of self-efficacy perceptions of them. However, considering variables of attending statistics class and the class types at the graduated high school, there is no significant difference between the mean score of attitudes of prospective teachers and between the mean score of self-efficacy perceptions of them.Keywords: Attitude, perception, prospective teacher, self-efficacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591148 A Sequential Pattern Mining Method Based On Sequential Interestingness
Authors: Shigeaki Sakurai, Youichi Kitahara, Ryohei Orihara
Abstract:
Sequential mining methods efficiently discover all frequent sequential patterns included in sequential data. These methods use the support, which is the previous criterion that satisfies the Apriori property, to evaluate the frequency. However, the discovered patterns do not always correspond to the interests of analysts, because the patterns are common and the analysts cannot get new knowledge from the patterns. The paper proposes a new criterion, namely, the sequential interestingness, to discover sequential patterns that are more attractive for the analysts. The paper shows that the criterion satisfies the Apriori property and how the criterion is related to the support. Also, the paper proposes an efficient sequential mining method based on the proposed criterion. Lastly, the paper shows the effectiveness of the proposed method by applying the method to two kinds of sequential data.
Keywords: Sequential mining, Support, Confidence, Apriori property
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12761147 Spike Sorting Method Using Exponential Autoregressive Modeling of Action Potentials
Authors: Sajjad Farashi
Abstract:
Neurons in the nervous system communicate with each other by producing electrical signals called spikes. To investigate the physiological function of nervous system it is essential to study the activity of neurons by detecting and sorting spikes in the recorded signal. In this paper a method is proposed for considering the spike sorting problem which is based on the nonlinear modeling of spikes using exponential autoregressive model. The genetic algorithm is utilized for model parameter estimation. In this regard some selected model coefficients are used as features for sorting purposes. For optimal selection of model coefficients, self-organizing feature map is used. The results show that modeling of spikes with nonlinear autoregressive model outperforms its linear counterpart. Also the extracted features based on the coefficients of exponential autoregressive model are better than wavelet based extracted features and get more compact and well-separated clusters. In the case of spikes different in small-scale structures where principal component analysis fails to get separated clouds in the feature space, the proposed method can obtain well-separated cluster which removes the necessity of applying complex classifiers.
Keywords: Exponential autoregressive model, Neural data, spike sorting, time series modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17701146 Factors Affecting the e-Business Adoption among the Home-Based Businesses (HBBs) in Malaysia
Authors: S, Rosnafisah, M.S., Siti Salbiah., A, Mohd Sharifuddin
Abstract:
Research in e-Business has been growing tremendously covering all related aspects such as adoption issues, e- Business models, strategies, etc. This research aims to explore the potential of adopting e-Business for a micro size business operating from home called home-based businesses (HBBs). In Malaysia, the HBB industry started many years ago and were mostly monopolized by women or housewives managed as a part-time job to support their family economy. Today, things have changed. The availability of the Internet technology and the emergence of e-Business concept promote the evolution of HBBs, which have been adopted as another alternative as a professional career for women without neglecting their family needs especially the children. Although this study is confined to a limited sample size and within geographical biasness, the findings show that it concurs with previous large scale studies. In this study, both qualitative and quantitative methods were used and data were gathered using triangulation methods via interview, direct observation, document analysis and survey questionnaires. This paper discusses the literature review, research methods and findings pertaining to e-Business adoption factors that influence the HBBs in Malaysia.Keywords: e-Business, HBB, adoption factor, qualitative andquantitative
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27101145 The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins
Abstract:
Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. 46 papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow ICSTs on different types of mycotoxins. The papers were dated 2001-2021. 25 papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone: 5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structures are usually used in large scale detection. In conclusion, the limit of detection of Aflatoxin B1 is the lowest among these mycotoxins. Gold-nanoparticle based immunochromatographic test strips have the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles.
Keywords: Aflatoxin B1, limit of detection, gold nanoparticle, lateral flow immunochromatographic strips, mycotoxins, smartphone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4141144 Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition
Authors: Chiou-Yng Lee, Wen-Yo Lee, Chieh-Tsai Wu, Cheng-Chen Yang
Abstract:
Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit level and digi -level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba schemes, and used that to derive a novel scalable multiplier architecture. Analytical results show that the proposed multiplier provides a trade-off between space and time complexities. Our proposed multiplier is modular, regular, and suitable for very large scale integration (VLSI) implementations. It involves less area complexity compared to the multipliers based on traditional decomposition methods. It is therefore, more suitable for efficient hardware implementation of pairing based cryptography and elliptic curve cryptography (ECC) in constraint driven applications.
Keywords: Digit-serial systolic multiplier, elliptic curve cryptography (ECC), Karatsuba algorithm (KA), shifted polynomial basis (SPB), pairing computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20611143 Analysis of a Population of Diabetic Patients Databases with Classifiers
Authors: Murat Koklu, Yavuz Unal
Abstract:
Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.
Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54311142 When Scientific Laws and Findings Encounter Life: A Traditional Chinese Medicine Perspective
Authors: Eric Y. Zhang, L. Acu
Abstract:
This paper is to point out the limitations of modern medical research and why the Traditional Chinese Medicine (TCM) can help address the limitations. Many of the modern medical research results are based on the findings in fundamental research disciplines, such as physics, and chemistry. However, this foundation is not as solid as it seems. The theory proposed in this paper, the Law of Chasm, or the Chasm Theory, states that there are two categories of objects to be studied. One is non-life objects, or lifeless objects; the other is living beings, or the objects that are alive. The laws and findings obtained by studying non-life objects may not all be extended to living beings, and vice versa. TCM is the study of medicine based on living beings. Therefore, TCM findings may not exist in the body of the knowledge obtained from studying non-life objects.
Keywords: TCM, Traditional Chinese Medicine, Law of Chasm, Chasm Theory, living-beings, non-life.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311141 Effects of Human Capital and Openness on Economic Growth of Developed and Developing Countries: A Panel Data Analysis
Authors: Fatma Didin Sonmez, Pinar Sener
Abstract:
Technology transfer by international trade and foreign direct investment is the most important positive outcome of open economy. It is widely accepted that new technology and knowledge have an important role in enhancing economic growth. Human capital is the other important factor assisting economic growth. In this study, the role of human capital in the growth process is examined in a view of new endogenous growth theory emphasizing on the technology transfer resulting from international trade. Using the panel data of 10 developed and 10 developing countries, impact of human capital and openness on the rate of economic growth of different countries is analysed. Evidence suggests the view that human capital and openness contribute to the economic growth in both developing and developed countries, but with different rates.Keywords: economic growth, human capital, openness, technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20801140 On Figuring the City Characteristics and Landscape in Overall Urban Design: A Case Study in Xiangyang Central City, China
Authors: Guyue Zhu, Liangping Hong
Abstract:
Chinese overall urban design faces a large number of problems such as the neglect of urban characteristics, generalization of content, and difficulty in implementation. Focusing on these issues, this paper proposes the main points of shaping urban characteristics in overall urban design: focuses on core problems in city function and scale, landscape pattern, historical culture, social resources and modern city style and digs the urban characteristic genes. Then, we put forward “core problem location and characteristic gene enhancement” as a kind of overall urban design technical method. Firstly, based on the main problems in urban space as a whole, for the operability goal, the method extracts the key genes and integrates into the multi-dimension system in a targeted manner. Secondly, hierarchical management and guidance system is established which may be in line with administrative management. Finally, by converting the results, action plan is drawn up that can be dynamically implemented. Based on the above idea and method, a practical exploration has been performed in the case of Xiangyang central city.Keywords: City characteristics, overall urban design, planning implementation, Xiangyang central city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9491139 Resveratrol Incorporated Liposomes Prepared from Pegylated Phospholipids and Cholesterol
Authors: Mont Kumpugdee-Vollrath, Khaled Abdallah
Abstract:
Liposomes and pegylated liposomes were widely used as drug delivery system in pharmaceutical field since a long time. However, in the former time, polyethylene glycol (PEG) was connected into phospholipid after the liposomes were already prepared. In this paper, we intend to study the possibility of applying phospholipids which already connected with PEG and then they were used to prepare liposomes. The model drug resveratrol was used because it can be applied against different diseases. Cholesterol was applied to stabilize the membrane of liposomes. The thin film technique in a laboratory scale was a preparation method. The liposomes were then characterized by nanoparticle tracking analysis (NTA), photon correlation spectroscopy (PCS) and light microscopic techniques. The stable liposomes can be produced and the particle sizes after filtration were in nanometers. The 2- and 3-chains-PEG-phospholipid (PL) caused in smaller particle size than the 4-chains-PEG-PL. Liposomes from PL 90G and cholesterol were stable during storage at 8 °C of 56 days because the particle sizes measured by PCS were almost not changed. There was almost no leakage of resveratrol from liposomes PL 90G with cholesterol after diffusion test in dialysis tube for 28 days. All liposomes showed the sustained release during measuring time of 270 min. The maximum release amount of 16-20% was detected with liposomes from 2- and 3-chains-PEG-PL. The other liposomes gave max. release amount of resveratrol only of 10%. The release kinetic can be explained by Korsmeyer-Peppas equation.
Keywords: Liposome, NTA, resveratrol, pegylation, cholesterol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10631138 Generation of Artificial Earthquake Accelerogram Compatible with Spectrum using the Wavelet Packet Transform and Nero-Fuzzy Networks
Authors: Peyman Shadman Heidari, Mohammad Khorasani
Abstract:
The principal purpose of this article is to present a new method based on Adaptive Neural Network Fuzzy Inference System (ANFIS) to generate additional artificial earthquake accelerograms from presented data, which are compatible with specified response spectra. The proposed method uses the learning abilities of ANFIS to develop the knowledge of the inverse mapping from response spectrum to earthquake records. In addition, wavelet packet transform is used to decompose specified earthquake records and then ANFISs are trained to relate the response spectrum of records to their wavelet packet coefficients. Finally, an interpretive example is presented which uses an ensemble of recorded accelerograms to demonstrate the effectiveness of the proposed method.
Keywords: Adaptive Neural Network Fuzzy Inference System, Wavelet Packet Transform, Response Spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28321137 Improving Detection of Illegitimate Scores and Assessment in Most Advantageous Tenders
Authors: Hao-Hsi Tseng, Hsin-Yun Lee
Abstract:
Adopting Most Advantageous Tender (MAT) for the government procurement projects has become popular in Taiwan. As time pass by, the problems of MAT has appeared gradually. People condemn two points that are the result might be manipulated by a single committee member’s partiality and how to make a fair decision when the winner has two or more. Arrow’s Impossibility Theorem proposed that the best scoring method should meet the four reasonable criteria. According to these four criteria this paper constructed an “Illegitimate Scores Checking Scheme” for a scoring method and used the scheme to find out the illegitimate of the current evaluation method of MAT. This paper also proposed a new scoring method that is called the “Standardizing Overall Evaluated Score Method”. This method makes each committee member’s influence tend to be identical. Thus, the committee members can scoring freely according to their partiality without losing the fairness. Finally, it was examined by a large-scale simulation, and the experiment revealed that the it improved the problem of dictatorship and perfectly avoided the situation of cyclical majorities, simultaneously. This result verified that the Standardizing Overall Evaluated Score Method is better than any current evaluation method of MAT.Keywords: Arrow’s impossibility theorem, most advantageous tender, illegitimate scores checking scheme, standard score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14691136 Using Ontology Search in the Design of Class Diagram from Business Process Model
Authors: Wararat Rungworawut, Twittie Senivongse
Abstract:
Business process model describes process flow of a business and can be seen as the requirement for developing a software application. This paper discusses a BPM2CD guideline which complements the Model Driven Architecture concept by suggesting how to create a platform-independent software model in the form of a UML class diagram from a business process model. An important step is the identification of UML classes from the business process model. A technique for object-oriented analysis called domain analysis is borrowed and key concepts in the business process model will be discovered and proposed as candidate classes for the class diagram. The paper enhances this step by using ontology search to help identify important classes for the business domain. As ontology is a source of knowledge for a particular domain which itself can link to ontologies of related domains, the search can give a refined set of candidate classes for the resulting class diagram.Keywords: Business Process Model, Model DrivenArchitecture, Ontology, UML Class Diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24711135 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24931134 A GA-Based Role Assignment Approach for Web-based Cooperative Learning Environments
Authors: Yi-Chun Chang, Jian-Wei Li
Abstract:
Web-based cooperative learning focuses on (1) the interaction and the collaboration of community members, and (2) the sharing and the distribution of knowledge and expertise by network technology to enhance learning performance. Numerous research literatures related to web-based cooperative learning have demonstrated that cooperative scripts have a positive impact to specify, sequence, and assign cooperative learning activities. Besides, literatures have indicated that role-play in web-based cooperative learning environments enhances two or more students to work together toward the completion of a common goal. Since students generally do not know each other and they lack the face-to-face contact that is necessary for the negotiation of assigning group roles in web-based cooperative learning environments, this paper intends to further extend the application of genetic algorithm (GA) and propose a GA-based algorithm to tackle the problem of role assignment in web-based cooperative learning environments, which not only saves communication costs but also reduces conflict between group members in negotiating role assignments.
Keywords: genetic algorithm (GA), role assignment, role-play; web-based cooperative learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14591133 Big Bang – Big Crunch Learning Method for Fuzzy Cognitive Maps
Authors: Engin Yesil, Leon Urbas
Abstract:
Modeling of complex dynamic systems, which are very complicated to establish mathematical models, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. Fuzzy cognitive maps are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. However, human experts are subjective and can handle only relatively simple fuzzy cognitive maps; therefore, there is a need of developing new approaches for an automated generation of fuzzy cognitive maps using historical data. In this study, a new learning algorithm, which is called Big Bang-Big Crunch, is proposed for the first time in literature for an automated generation of fuzzy cognitive maps from data. Two real-world examples; namely a process control system and radiation therapy process, and one synthetic model are used to emphasize the effectiveness and usefulness of the proposed methodology.Keywords: Big Bang-Big Crunch optimization, Dynamic Systems, Fuzzy Cognitive Maps, Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18411132 Decision Maturity Framework: Introducing Maturity In Heuristic Search
Authors: Ayed Salman, Fawaz Al-Anzi, Aseel Al-Minayes
Abstract:
Heuristics-based search methodologies normally work on searching a problem space of possible solutions toward finding a “satisfactory" solution based on “hints" estimated from the problem-specific knowledge. Research communities use different types of methodologies. Unfortunately, most of the times, these hints are immature and can lead toward hindering these methodologies by a premature convergence. This is due to a decrease of diversity in search space that leads to a total implosion and ultimately fitness stagnation of the population. In this paper, a novel Decision Maturity framework (DMF) is introduced as a solution to this problem. The framework simply improves the decision on the direction of the search by materializing hints enough before using them. Ideas from this framework are injected into the particle swarm optimization methodology. Results were obtained under both static and dynamic environment. The results show that decision maturity prevents premature converges to a high degree.Keywords: Heuristic Search, hints, Particle Swarm Optimization, Decision Maturity Framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13551131 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500
Authors: Mustafa Elfituri, Jonathan Cook
Abstract:
Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.
Keywords: Graph computation, Graph500 benchmark, parallel architectures, parallel programming, workload characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5481130 Legal Education as Forming Factor of Legal Culture in Kazakhstan Modern Society
Authors: M. Karassartova, D. Shormanbayeva, A. Beissenova, S.Balshikeyev
Abstract:
Forming a legal culture among citizens is a complicated and lengthy process, influencing all spheres of social life. It includes promoting justice, learning rights and duties, the introduction of juridical norms and knowledge, and also a process of developing a system of legal acts and constitutional norms. Currently, the evaluative and emotional influence of attempts to establish a legal culture among the citizens of Kazakhstan is limited by real legal practice. As a result, the values essential to a sound civil society are absent from the consciousness of the Kazakh people who are thus, in turn, not able to develop respect for these values. One of the disadvantages of the modern Kazakh educational system is a tendency to underrate the actual forces shaping the worldview of Kazakh youths. The mass-media, which are going through a personnel crisis, cannot provide society with the legal and political information necessary to form the sort of legal culture required for a true civil society.Keywords: Kazakhstan society, Legal education, legal culture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19411129 Investigating the Road Maintenance Performance in Developing Countries
Authors: Jamaa Salih, Francis Edum-Fotwe, Andrew Price
Abstract:
One of the most critical aspects of the management of road infrastructure is the type and scale of maintenance systems adopted and the consequences of their inadequacy. The performance of road maintenance systems can be assessed by a number of important indicators such as: cost, safety, environmental impact, and level of complaints by users. A review of practice reveals that insufficient level of expenditure or poor management of the road network often has serious consequences for the economic and social life of a country in terms of vehicle operating costs (VOC), travel time costs, accident costs and environmental impact. Despite an increase in the attention paid by global road agencies to the environmental and the road users’ satisfaction, the overwhelming evidence from the available literature agree on the lack of similar levels of attention for the two factors in many developing countries. While many sources agree that the road maintenance backlog is caused by either the shortage of expenditures or lack of proper management or both, it appears that managing the available assets particularly in the developing countries is the main issue. To address this subject, this paper will concentrate on exposing the various issues related to this field.
Keywords: Environmental impact, performance indicators, road maintenance, users’ satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33931128 Preservation of Coconut Toddy Sediments as a Leavening Agent for Bakery Products
Authors: B. R. Madushan, S. B. Navaratne, I. Wickramasinghe
Abstract:
Toddy sediment (TS) was cultured in a PDA medium to determine initial yeast load, and also it was undergone sun, shade, solar, dehumidified cold air (DCA) and hot air oven (at 400, 500 and 60oC) drying with a view to preserve viability of yeast. Thereafter, this study was conducted according to two factor factorial design in order to determine best preservation method. Therein the dried TS from the best drying method was taken and divided into two portions. One portion was mixed with 3: 7 ratio of TS: rice flour and the mixture was divided in to two again. While one portion was kept under in house condition the other was in a refrigerator. Same procedure was followed to the rest portion of TS too but it was at the same ratio of corn flour. All treatments were vacuum packed in triple laminate pouches and the best preservation method was determined in terms of leavening index (LI). The TS obtained from the best preservation method was used to make foods (bread and hopper) and organoleptic properties of it were evaluated against same of ordinary foods using sensory panel with a five point hedonic scale. Results revealed that yeast load or fresh TS was 58×106 CFU/g. The best drying method in preserving viability of yeast was DCA because LI of this treatment (96%) is higher than that of other three treatments. Organoleptic properties of foods prepared from best preservation method are as same as ordinary foods according to Duo trio test.Keywords: Biological leavening agent, coconut toddy, fermentation, yeast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22491127 A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem
Authors: T. Vigneswaran, B. Mukundhan, P. Subbarami Reddy
Abstract:
Full adders are important components in applications such as digital signal processors (DSP) architectures and microprocessors. In addition to its main task, which is adding two numbers, it participates in many other useful operations such as subtraction, multiplication, division,, address calculation,..etc. In most of these systems the adder lies in the critical path that determines the overall speed of the system. So enhancing the performance of the 1-bit full adder cell (the building block of the adder) is a significant goal.Demands for the low power VLSI have been pushing the development of aggressive design methodologies to reduce the power consumption drastically. To meet the growing demand, we propose a new low power adder cell by sacrificing the MOS Transistor count that reduces the serious threshold loss problem, considerably increases the speed and decreases the power when compared to the static energy recovery full (SERF) adder. So a new improved 14T CMOS l-bit full adder cell is presented in this paper. Results show 50% improvement in threshold loss problem, 45% improvement in speed and considerable power consumption over the SERF adder and other different types of adders with comparable performance.Keywords: Arithmetic circuit, full adder, multiplier, low power, very Large-scale integration (VLSI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39591126 Perception of the Frequency and Importance of Peer Social Support by Students with Special Educational Needs in Inclusive Education
Authors: Lucia Hrebeňárová, Jarmila Žolnová, Veronika Palková
Abstract:
Inclusive education of students with special educational needs has been on the increase in the Slovak Republic, facing many challenges. Preparedness of teachers for inclusive education is one of the most frequent issues; teachers lack skills when it comes to the use of effective instruction depending on the individual needs of students, improvement of classroom management and social skills, and support of inclusion within the classroom. Social support is crucial for the school success of students within inclusive settings. The aim of the paper is to analyse perception of the frequency and importance of peer social support by students with special educational needs in inclusive education. The data collection tool used was the Child and Adolescent Social Support Scale (CASSS). The research sample consisted of 953 fourth grade students – 141 students with special educational needs educated in an inclusive setting and 812 students of the standard population. No significant differences were found between the students with special educational needs and the students without special educational needs in an inclusive setting when it comes to the perception of frequency and importance of social support of schoolmates and friends. However, the perception of frequency and importance of a friend’s social support was higher than the perception of frequency and importance of a classmate’s social support in both groups of students.Keywords: Inclusive education, peer social support, peer, student with special educational needs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13081125 An Integrative Bayesian Approach to Supporting the Prediction of Protein-Protein Interactions: A Case Study in Human Heart Failure
Authors: Fiona Browne, Huiru Zheng, Haiying Wang, Francisco Azuaje
Abstract:
Recent years have seen a growing trend towards the integration of multiple information sources to support large-scale prediction of protein-protein interaction (PPI) networks in model organisms. Despite advances in computational approaches, the combination of multiple “omic" datasets representing the same type of data, e.g. different gene expression datasets, has not been rigorously studied. Furthermore, there is a need to further investigate the inference capability of powerful approaches, such as fullyconnected Bayesian networks, in the context of the prediction of PPI networks. This paper addresses these limitations by proposing a Bayesian approach to integrate multiple datasets, some of which encode the same type of “omic" data to support the identification of PPI networks. The case study reported involved the combination of three gene expression datasets relevant to human heart failure (HF). In comparison with two traditional methods, Naive Bayesian and maximum likelihood ratio approaches, the proposed technique can accurately identify known PPI and can be applied to infer potentially novel interactions.Keywords: Bayesian network, Classification, Data integration, Protein interaction networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16161124 CoP-Networks: Virtual Spaces for New Faculty’s Professional Development in the 21st Higher Education
Authors: Eman AbuKhousa, Marwan Z. Bataineh
Abstract:
The 21st century higher education and globalization challenge new faculty members to build effective professional networks and partnership with industry in order to accelerate their growth and success. This creates the need for community of practice (CoP)-oriented development approaches that focus on cognitive apprenticeship while considering individual predisposition and future career needs. This work adopts data mining, clustering analysis, and social networking technologies to present the CoP-Network as a virtual space that connects together similar career-aspiration individuals who are socially influenced to join and engage in a process for domain-related knowledge and practice acquisitions. The CoP-Network model can be integrated into higher education to extend traditional graduate and professional development programs.Keywords: Clustering analysis, community of practice, data mining, higher education, new faculty challenges, social networks, social influence, professional development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9731123 Simulating Discrete Time Model Reference Adaptive Control System with Great Initial Error
Authors: Bubaker M. F. Bushofa, Abdel Hafez A. Azab
Abstract:
This article is based on the technique which is called Discrete Parameter Tracking (DPT). First introduced by A. A. Azab [8] which is applicable for less order reference model. The order of the reference model is (n-l) and n is the number of the adjustable parameters in the physical plant. The technique utilizes a modified gradient method [9] where the knowledge of the exact order of the nonadaptive system is not required, so, as to eliminate the identification problem. The applicability of the mentioned technique (DPT) was examined through the solution of several problems. This article introduces the solution of a third order system with three adjustable parameters, controlled according to second order reference model. The adjustable parameters have great initial error which represent condition. Computer simulations for the solution and analysis are provided to demonstrate the simplicity and feasibility of the technique.Keywords: Adaptive Control System, Discrete Parameter Tracking, Discrete Time Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066