Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
Big Bang – Big Crunch Learning Method for Fuzzy Cognitive Maps

Authors: Engin Yesil, Leon Urbas

Abstract:

Modeling of complex dynamic systems, which are very complicated to establish mathematical models, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. Fuzzy cognitive maps are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. However, human experts are subjective and can handle only relatively simple fuzzy cognitive maps; therefore, there is a need of developing new approaches for an automated generation of fuzzy cognitive maps using historical data. In this study, a new learning algorithm, which is called Big Bang-Big Crunch, is proposed for the first time in literature for an automated generation of fuzzy cognitive maps from data. Two real-world examples; namely a process control system and radiation therapy process, and one synthetic model are used to emphasize the effectiveness and usefulness of the proposed methodology.

Keywords: Big Bang-Big Crunch optimization, Dynamic Systems, Fuzzy Cognitive Maps, Learning.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1083583

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488

References:


[1] R. Axelrod, Structure of Decision: the Cognitive Maps of Political Elites. Princeton University Press, Princeton, New Jersey, 1976.
[2] B. Kosko, "Fuzzy cognitive maps," International Journal of Man- Machine Studies, vol. 24, pp. 65-75, 1986.
[3] J. Aguilar, "A survey about fuzzy cognitive maps papers," International Journal of Computational Cognition, vol. 3(2), pp. 27-33, 2005.
[4] R. J. G. B. Campello and W. C. Amaral, "Towards true linguistic modeling through optimal numerical solutions," Int. J. Syst. Sci., vol. 34 (2), pp. 139-157, 2003.
[5] S. Alizadeh and M. Ghazanfari, "Learning FCM by chaotic simulated annealing," Chaos, Solutions & Fractals, vol. 41(3), pp. 1182-1190, 2009.
[6] J.A. Dickerson and B. Kosko, "Fuzzy virtual worlds", Artif. Intell. Expert, vol. 7, pp. 25-31, 1994.
[7] A. Vazquez, A balanced differential learning algorithm in fuzzy cognitive maps, Technical report, Departament de Llenguatges I Sistemes Informatics, Universitat Politecnica de Catalunya (UPC), 2002.
[8] E. I. Papageorgiou, C. D. Stylios and P.P. Groumpos, "Fuzzy cognitive map learning based on nonlinear Hebbian rule", in Australian conference on artificial intelligence, 2003, pp. 256-68.
[9] E. I. Papageorgiou, C. D. Stylios and P.P. Groumpos, "Active Hebbian learning algorithm to train fuzzy cognitive maps", Int. J. Approx. Reason., vol. 37(3), pp. 219-49, 2004.
[10] D. E. Koulouriotis, I. E. Diakoulakis and D. M. Emiris, "Learning fuzzy cognitive maps using evolution strategies: a novel schema for modeling and simulating high-level behavior," in IEEE congress on evolutionary computation (CEC2001), 2001, pp. 364-71.
[11] W. Stach, L. Kurgan, W. Pedrycz and R. Marek, "Genetic learning of fuzzy cognitive maps", Fuzzy Sets Syst., vol. 153, pp. 371-401, 2005.
[12] M. Khan and A. Chong, "Fuzzy cognitive map analysis with genetic algorithm", in Proceedings of the 1st Indian international conference on artificial intelligence (IICAI-03), 2003.
[13] Parsopoulos K.E, Papageorgiou E.I, Groumpos P.P. and Vrahatis M.N., "A first study of fuzzy cognitive maps learning using particle swarm optimization", in Proceedings of the IEEE 2003 congress on evolutionary computation, 2003. p. 1440-1447.
[14] M. Ghazanfari, S. Alizadeh, M. Fathian and D. E. Koulouriotis, "Comparing simulated annealing and genetic algorithm in learning FCM", Appl. Math Comput., vol. 192(1), pp.56-68, 2007.
[15] E. Papageorgiou, C. Stylios and P. Groumpos, "Unsupervised learning techniques for fine-tuning fuzzy cognitive map causal links", Int. J. Human Comput. Stud., vol. 64, pp. 727-743, 2006.
[16] Y. G. Petalas, , K. E. Parsopoulos and M. N. Vrahatis, "Improving Fuzzy Cognitive Maps Learning Through Memetic Particle Swarm Optimization", Soft Computing, vol. 13(1), pp. 77-94, 2009.
[17] W. Stach, L. Kurgana, and W. Pedrycz, "A divide and conquer method for learning large Fuzzy Cognitive Maps", Fuzzy Sets and Systems, to be published.
[18] O. K. Erol and I. Eksin, "A new optimization method: Big Bang-Big Crunch," Advances in Engineering Software, vol. 37, pp. 106-111, 2006.
[19] A. Kaveh and S. Talatahari, "Optimal design of Schwedler and ribbed domes via hybrid Big Bang-Big Crunch algorithm", Journal of Construction Steel Research, vol. 66(3), pp. 412-419, 2010.
[20] T. Kumbasar, I. Eksin, M. Guzelkaya and E. Yesil, "Big bang big crunch optimization method based fuzzy model inversion", MICAI 2008, LNCS 5317, pp. 732-740, 2008.
[21] M. Dogan and Y. Istefanopulos, "Optimal nonlinear controller design for flexible robot manipulators with adaptive internal model", IET Control Theory and Applications, vol. 1(3), pp.770-778, 2007.
[22] H. M. Genc and A. K. Hocaoglu, "Bearing-only target tracking based on Big Bang - Big Crunch algorithm", in Proc. - The 3rd Int. Multi-Conf. Computing in the Global Information Technology, ICCGI 2008 in Conjunction with ComP2P, pp. 229-233, 2008.
[23] A. Akyol and Y. Yaslan, O. K. Erol, "A Genetic Programming Classifier Design Approach for Cell Images", ECSQARU 2007, LNCS 4724, pp. 878-888, 2007.
[24] C. V. Camp, "Design of space trusses using big bang-big crunch optimization", Journal of Structural Engineering, vol. 133(7), pp. 999- 1008, 2007.
[25] A. Kaveh and S. Talatahari, "Size optimization of space trusses using Big Bang-Big Crunch algorithm", Computers and Structures, vol. 87, pp. 1129-1140, 2009.
[26] B. Kosko, Neural Networks and Fuzzy Systems, Englewood Cliffs, NJ, Prentice-Hall, 1992.
[27] C. D. Stylios and P. P. Groumpos, "Modeling Complex Systems Using Fuzzy Cognitive Maps", IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 34(1), pp. 155-162, 2004.
[28] C. D. Stylios, P. P. Groumpos, "The challenge of modelling supervisory systems using fuzzy cognitive maps", J. Intell. Manufact., vol. 9, pp.339-345, 1998.
[29] P. P. Groumpos and C.D. Stylios, "Modeling Supervisory Control Systems using Fuzzy Cognitive Maps", Chaos, Solitons and Fractals, (2000), Vol.11, No 1-3, pp. 329-336
[30] E. I. Papageorgiou, C.D. Stylios, P.P. Groumpos, "Fuzzy Cognitive Map Learning based on Nonlinear Hebbian Rule", 16th Australian Joint Conference on Artificial Intelligence - AI-03, Perth-Western Australia, December 3-5, 2003; T.D. Gedeon and L.C.C. Fung (Eds.): AI 2003, LNAI 2903, pp. 254-266, 2003, Springer-Verlag Berlin Heidelberg 2003.
[31] K. E. Parsopoulos, E. I. Papageorgiou, P. P Groumpos, M. N. Vrahatis, "Evolutionary computation techniques for optimizing fuzzy cognitive maps in radiation therapy systems", Lecture Notes in Computer Science (LNCS), vol. 3102, pp. 402-413, 2004.