
Abstract—Business process model describes process flow of a
business and can be seen as the requirement for developing a
software application. This paper discusses a BPM2CD guideline
which complements the Model Driven Architecture concept by
suggesting how to create a platform-independent software model in
the form of a UML class diagram from a business process model. An
important step is the identification of UML classes from the business
process model. A technique for object-oriented analysis called
domain analysis is borrowed and key concepts in the business
process model will be discovered and proposed as candidate classes
for the class diagram. The paper enhances this step by using ontology
search to help identify important classes for the business domain. As
ontology is a source of knowledge for a particular domain which
itself can link to ontologies of related domains, the search can give a
refined set of candidate classes for the resulting class diagram.

Keywords—Business Process Model, Model Driven
Architecture, Ontology, UML Class Diagram.

I. INTRODUCTION

ODEL Driven Architecture (MDA) is an architecture for
software development whose philosophy is to derive

software artifacts from software models [1]. With this
architecture, software models are not merely for
documentation purpose but are seen as a very high-level
programming language. Three main steps are at the core of
MDA. First, a software model at a very high level called a
platform-independent model (PIM) is created by software
designers. PIM concerns only business functionality of the
application domain. Second, PIM is transformed into a lower-
level software model called platform-specific model (PSM)
because this model is tailored for a specific technology
platform the will be used to implement the software. Third,
PSM is transformed into program code of the chosen platform.
The transformation in these three steps is expected to be
automatic or semi-automatic with support from software
design tools. UML [2] is the software modeling language that
is usually associated with MDA.

Business process modeling is receiving much attention in
software development community [3]. A business process

W. Rungworawut is with the Information Systems Engineering Laboratory,
Department of Computer Engineering, Chulalongkorn University, Bangkok
10330 Thailand (phone: +66 2 2186991; fax: +66 2 2186955; e-mail:
wararatkku@yahoo.com).

T. Senivongse is with the Information Systems Engineering Laboratory,
Department of Computer Engineering, Chulalongkorn University, Bangkok
10330 Thailand (phone: +66 2 2186996; fax: +66 2 2186955; e-mail:
twittie.s@chula.ac.th).

model can well represent the operational process of a
particular business, is easy for the users in the business to
understand, and is convenient for the business analysts to
define business requirements and communicate with software
designers who will develop the corresponding software
models.

Our previous work [4] has proposed a guideline called
BPM2CD as a complement to the MDA concept. The work
suggests how to create a UML class diagram at PIM level for
a particular business domain from its business process model
represented by a BPMN diagram [5]. The guideline borrows
the idea of object-oriented domain analysis [6] to identify
UML classes from BPMN processes and adds details to the
classes by domain-specific semantics such as software pattern
and other additional semantics.

Domain analysis is an important step in the guideline as it
discovers key concepts of the application domain from the
business process model and proposes them as candidate
classes to the software designer. The concept category
strategy is one strategy in the domain analysis which involves
search in a knowledge base of the domain in order to identify
potential classes for the application. This paper sees the
benefit of using ontology search here since ontology is a
source of conceptual knowledge for a particular domain which
itself can link further to ontologies of related domains. With
ontology search, we can obtain a refined set of concepts or
candidate classes that relate to the particular domain of
interest.

We revisit the BPM2CD guideline which is the context of
this work in Section II. Section III shows how ontology search
is applied to the domain analysis step of the guideline using
our search tool. Section IV gives an example using a purchase
order domain. Some related work is discussed in Section V
and the paper concludes in Section VI.

II. BPM2CD GUIDELINE

The Business Process Model to Class Diagram (BPM2CD)
guideline suggests a way a software designer may take to
derive a PIM class diagram from a business process model.
Fig. 1 shows how the guideline fits in with the MDA concept.
The guideline consists of three steps:

Using Ontology Search in the Design of Class
Diagram from Business Process Model

Wararat Rungworawut, and Twittie Senivongse

M

World Academy of Science, Engineering and Technology
International Journal of Industrial and Systems Engineering

 Vol:1, No:12, 2007

834International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
12

, 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
59

.p
df

Fig. 1 BPM2CD guideline and MDA

A. Analysis of Business Process Model
In this first step, the business process model is analyzed in

order to identify key concepts of the business domain that
would constitute a set of classes (i.e., the conceptual model)
for the class diagram. This domain analysis approach is an
object-oriented analysis technique and comprises two
strategies [6]:

1) Noun Phrase Identification Strategy
The software designer will examine the business process

model and identify important noun phrases for the business
domain. Fig. 2(a) depicts a business process of a vendor,
processing a purchase order, in a BPMN diagram. The
purchase order is checked against the stock of goods. If there
is enough goods, a sales order is open. If successful, the
loyalty program is processed and the sale is confirmed.
Otherwise, the sale is rejected. In the case that there is not
enough goods in stock, the vendor records an outstanding
purchase, executes the restock policy to reorder goods from a
supplier, and replies to the customer. The software designer
highlights important noun phrases in the business process and
these noun phrases become the candidate classes in the
conceptual model of the purchase order domain (Fig. 2(b)).

2) Concept Category Strategy
This strategy is based on a collection of vocabularies or

concepts that are related to the application domain and are
defined by domain experts. The software designer may use
noun phrases from the noun phrase identification strategy
(e.g., purchase order) to lookup in this collection. Fig. 3(a)
shows a table of the concept categories and the corresponding
concepts for purchase order. The resulting concepts from the
lookup will be chosen as candidate classes by the software
designer (Fig. 3(b)).

 The two strategies complement each other. The noun
phrase identification strategy can discover concepts that are
specific to a particular business but may not be listed in the

concept category. Likewise, the concept category strategy can
discover concepts that are important and should be designed
as classes for the application but may be missing from the
business process model.

(a) Highlight of noun phrases

(b) Candidate classes

Fig. 2 Noun phrase identification for purchase order

(a) Concept category

(b) Candidate classes

Fig. 3 Concept category for purchase order

B. Applying Formal Semantics
The software designer may select some concepts from the

set of candidate classes from the domain analysis and
proposes them as classes for the class diagram. However,
these are merely class names. Domain-specific semantics will
be applied to add details to the classes (e.g., attributes,
methods, relationships between classes) to form the class

World Academy of Science, Engineering and Technology
International Journal of Industrial and Systems Engineering

 Vol:1, No:12, 2007

835International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
12

, 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
59

.p
df

diagram. Domain-specific semantics exists and may be formal
(i.e., properly cataloged) and may be in several forms (e.g.,
descriptive text, ontology, software model such as software
patterns). In [4], archetype patterns related to the domain are
applied to the selected classes and form the class diagram.

C. Applying Additional Semantics
Additional semantics refers to other knowledge about the

business domain that has not been derived from the domain
analysis and may not be cataloged properly. This software
designer or business analyst may add additional semantics to
refine and complete the class diagram.

III. ONTOLOGY SEARCH IN DOMAIN ANALYSIS

Ontology is a specification of conceptualization for a
domain of interest [8]. It describes knowledge about the
domain in terms of concepts or vocabularies within the
domain and relationships between them. Several XML-based
ontology languages are available (e.g., RDF, RDFS,
DAML+OIL, OWL) [9], and they are supported by inference
engines. A network of knowledge is achieved by inference
and by sharing of ontological concepts among ontologies of
different domains.

Looking back at the domain analysis, we see that ontology
can help enhance the concept category strategy. As it is a
collection of concepts of a domain, the concept category can
be represented as an ontology. Therefore we can look for
important concepts of the domain from the network of
knowledge that it creates.

A. Concept Category Ontology Model
The domain concepts as in Fig. 3(a) can be represented by

the concept category ontology model in Fig. 4. This model has
three layers. The first layer is the upper ontology. The concept
categories (i.e., the left column of Fig. 3(a)) are defined as
classes in this ontology. The concepts of the domain (i.e., the
right column of Fig. 3(a)) are defined as classes in the lower
ontology in the second layer. These classes will be derived
from (i.e., be subclasses of) the corresponding categories in
the upper ontology. Specific instances of the domain can be
defined in the third layer as the instances of the domain
concept in the lower ontology.

Fig. 4 Concept category ontology model

Fig. 5 shows a snippet of the (lower) ontology of the
purchase order domain in OWL [10]. This ontology follows
our concept category ontology model and will be used by our
ontology search tool to find important concepts for purchase
order domain. Note that the domain ontology may not comply
with the concept category ontology model; any ontology that
defines concepts of the domain as ontology classes can be
used with the tool.

Fig. 5 Part of concept category for purchase order in OWL

B. Ontology Search Process
Fig. 6 shows the ontology search process for the concept

category strategy. The process begins with the software
designer identifying a keyword for the domain. This can be a
noun phrase from the noun phrase identification strategy (e.g.,
purchase order). The keyword is input to our ontology search
tool called the concept finder. The tool will look for
ontologies that relate to this keyword and extract concepts in
the ontologies as candidate classes. The software designer can
use the concepts returned from the search as new keywords
for lookup.

Fig. 6 Ontology search process

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://purchaseOrder.com/purchase.owl#"
 xml:base="http://purchaseOrder.com/purchase.owl">
<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="SalesWebpage">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Physical"/>
 </rdfs:subClassOf>
 </owl:Class>
<owl:Class rdf:ID="ProductionSpecification">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Specification"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Role"/>
 <owl:Class rdf:ID="Buyer">
 <rdfs:subClassOf rdf:resource="#Role"/>
 </owl:Class>
 <owl:Class rdf:ID="Seller">
 <rdfs:subClassOf rdf:resource="#Role"/>
 </owl:Class>
 ….
 …
</rdf:RDF>

World Academy of Science, Engineering and Technology
International Journal of Industrial and Systems Engineering

 Vol:1, No:12, 2007

836International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
12

, 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
59

.p
df

C. Concept Finder
Fig. 7 shows the components of the concept finder tool (in

dotted box). The software designer inputs a keyword for the
domain through the Web-based interface of the tool. The
search proxy uses an ontology search engine to retrieve
ontology files which contain the keyword. Swoogle [11] is an
ontology search engine that performs string search on class
names and property names in the ontology files of several
languages. Relevant ontologies will be kept in a repository.
We assume that domain experts will define concept categories
of any domains as ontology files. Another function of the
search proxy is to find synonyms for the input keyword. This
is because the keyword may not match exactly the term in
ontologies. We assume the domain experts also define a
dictionary or ontology that specifies synonyms. The synonyms
are reported to the software designer.

Relevant ontologies in the repository will be processed by
the class extractor component to extract class names. The
software designer can use the returned class names or
synonyms as the new keywords and repeat the process. This
helps refine the search as one keyword will lead to a number
of concepts or candidate classes and another keyword will
lead to more. The software designer should have a rich set of
concepts that cover the knowledge about the domain in a
broad area. The software designer selects appropriate concepts
which become the classes in the class diagram.

Fig. 7 Diagrammatic overview of concept finder tool

The concept finder tool is implemented using Java Server
Page (JSP) [12]. It uses a Jena Java API [13] to read ontology
files (RDF, RDFS, and OWL).

IV. EXAMPLE

This section presents an example of ontology search using
the concept finder tool to find candidate classes for the
purchase order domain. As in Fig. 8(a), a software designer
can input keywords purchase order in part 1 of the Web-
based user interface. The tool consults Swoogle and returns a

list of ontology resources that contain the keywords. It also
returns a list of synonyms of purchase order (i.e. order and
purchase in this case). In some case when no ontology file
that contains the input keywords is found and the tool may
discover synonyms of the keyword which can be used instead.
The software designer can click on a synonym and it will
appear in the keywords box for another search.

Part 2 shows the lists of concepts that are the classes in the
ontology resources listed in part 1. The software designer can
refine search to obtain more concepts by clicking the radio
box in front of the concept that needs to be refined and that
concept will appear in the keywords box for search. Suppose
that the concept RestockPolicy under
http://purchaseOrder.com/purchase.owl is clicked and the tool
cannot find any ontology files that contain this keyword but its
synonym Reorder is found. The software designer can search
on Reorder instead (Fig. 8(b)) and obtains an ontology
resource with its concepts listed. In this scenario, the concepts
discovered by the keywords purchase order and Reorder
altogether form the set of candidate classes for the purchase
order domain.

Using keywords of the domain to search and extract
concepts from ontology resources is similar to conventional
lookup in the concept category strategy in Section II.A.2 but
the tool conveniently allows iterative lookup by other related
keywords. When single concept categories may be too general
or not complete enough, iterative lookup of related concepts
will lead to discovery of more concepts that may not directly
belong to the domain but somehow related to it and may be
useful for the design of the application. In this way, different
sources of knowledge related to the domain are integrated into
a more comprehensive one.

Since domain analysis by noun phrase identification
strategy and concept category strategy (using the concept
finder tool) discovers concepts that are relevant to the domain
in general, the analysis result could be a large number of
candidate classes, some of which may be or may not be
necessary for the specific application being designed. The
software designer will have to decide which ones should
become classes in the class diagram. Fig. 9 shows the classes
that are chosen in this example. As suggested by the
BPM2CD guideline, formal and additional semantics can be
applied to the chosen classes to give them details and form a
complete class diagram. Fig. 10 shows the final class diagram
resulting from applying the order and product archetype
patterns [7] (above the dotted line) and additional semantics
about restock policy and loyalty program (below the dotted
line) to the chosen candidate classes.

Fig. 9 Candidate classes are chosen

World Academy of Science, Engineering and Technology
International Journal of Industrial and Systems Engineering

 Vol:1, No:12, 2007

837International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
12

, 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
59

.p
df

(a) Search with keyword purchase order

(b) Refine search with the synonym Reorder of the concept RestockPolicy

Fig. 8 Using concept finder to search for concepts in purchase order domain

World Academy of Science, Engineering and Technology
International Journal of Industrial and Systems Engineering

 Vol:1, No:12, 2007

838International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
12

, 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
59

.p
df

Fig. 10 Appling formal and additional semantics to candidate classes

V. RELATED WORK

Mapping between business process models and UML
diagrams has been targeted by a number of researches, and
most of the time, it is manual or semi-automatic. The obvious
case is the straightforward correspondences between
workflow languages and UML activity diagrams such as in
[14]. The less obvious case is the mapping to other UML
diagrams. In [15], the work focuses on the use of business
process patterns and on deriving UML classes from them.
Similar to our approach, some semantic information is added
to complete the resulting class diagram but no clear guideline
has been given on how to identify the classes and where the
additional semantics come from. The work provides a
supporting tool that helps design business process models and
business process patterns, but does not help in mapping to
class diagrams.

The idea of our concept finder tool comes from OntoSearch
tool [16] which uses Google facility “filetype:RDFs keyword”
to search for RDFs ontologies with the specified keyword.
The tool can show the ontologies graphically and list all
classes in RDFs triple format. Our concept finder instead uses
Swoogle which can perform keyword search on several
formats of ontology files and the tool is added with the ability
to find synonyms for the keywords.

VI. CONCLUSION

This paper presents a guideline to build a PIM-level class
diagram from a business process model of an application
domain. The steps to be taken are mostly manual but an
ontology search tool is proposed to facilitate the software

designers to some extent. The tool assists in the identification
of classes for the class diagram by allowing knowledge related
to the domain to be discovered.

At present, the concept finder tool can find only ‘plain’
vocabularies within the domain; it does not distinguish
whether a particular concept should be a class name or an
attribute name or a method name in the class diagram. We will
study on how to make ontology more useful to the building of
the class diagrams since correspondences between ontology
and UML have been established [17], [18]. The formulation of
domain-specific semantics into class diagrams can be more
automated such as the formulation from ontology-based
domain semantics. Also, the model mapping process could be
enhanced for MDA by a formal mapping between the
metamodel of the business process modeling language and
UML metamodel.

REFERENCES

[1] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture Practice and Promise. Boston: Addison-Wesley, 2003.

[2] OMG. (2004, October, 2). UML Specification Version 2.0. Available:
http://www.uml.org

[3] H. Smith. (2003, July). BPM and MDA: Competitors, Alternatives of
Complementary. White paper. Available: http://www.BPtrends.com

[4] W. Rungworawut and T. Senivongse, “A guildeline to mapping business
process to UML class diagrams,” WSEAS Transactions on Computer,
Vol. 4(11), November 2005, pp. 1526-1533.

[5] Business Process Management Initiative. (2004, May, 3). Business
Process Modeling Notation (BPMN) Version 1.0. Available:
http://www.bpmi.org

[6] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design. New Jersey: Prentice Hall, Inc., 1997.

[7] J. Arlow and I. Neustadt, Enterprise Pattern and MDA: Building Better
Software with Archetype Patterns and UML. Boston: Pearson Education,
Inc., 2004.

[8] T. Gruber, “A translation approach to portable ontology specifications,”
Knowledge Acquisition, Vol. 5, No. 2, 1993, pp. 199-220.

[9] M. C. Daconta, L. J. Obrst, and K. T. Smith, The Semantic Web. Indiana:
Wiley, 2003.

[10] W3C. (2004, February, 10). OWL Web Ontology Language. Available:
http://www.w3.org/TR/owl-features/

[11] umbc.edu. Swoogle Search and Metadata for the Semantic Web.
Available: http://swoogle.umbc.edu

[12] Sun Developer Network (SDN). JavaServer Pages Technology : JSP.
Available: http://java.sun.com/products/jsp/

[13] Jena-Semantic Web Framework. Available: http://jena.sourceforge.net/
[14] S. A. White. (2004, March). Process Modeling Notations and Workflow

Patterns. White Paper. Available: http://www.BPtrends.com
[15] O. H. Barros. (2004, September). Business Information System Design

Based on Process Pattern and Frameworks. Industrial Engineering
Department, University of Chile. Available: http://www.BPtrends.com

[16] Y. Zhang, W. Vasconcelos, and D. Sleeman, “OntoSearch: an ontology
search engine,” in Proc. 24th SGAI International Conference on
Innovation Techniques and Application of Artificial Intelligence,
Cambridge, UK, 2004.

[17] J. Evermann and Y. Wand, “Toward formalizing domain modeling
semantics in language syntax,” IEEE Transaction on Software
Engineering, Vol. 31(1), pp. 21-37, January 2005.

[18] DSTC. (2004) Ontology Definition MetaModel, Preliminary Revised
Submission to OMG RFP ad/2003-03-40 Volume 1.

World Academy of Science, Engineering and Technology
International Journal of Industrial and Systems Engineering

 Vol:1, No:12, 2007

839International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
12

, 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
59

.p
df

