Search results for: Image Transform
118 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing
Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor
Abstract:
This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.Keywords: Intelligent transportation systems, object detection, video processing, road traffic, vehicle counting, vehicle classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626117 Celebrity Endorsement: How It Works When a Celebrity Fits the Brand and Advertisement
Authors: Göksel Şimşek
Abstract:
Celebrities are admired, appreciated and imitated all over the world. As a natural result of this, today many brands choose to work with celebrities for their advertisements. It can be said that the more the brands include celebrities in their marketing communication strategies, the tougher the competition in this field becomes and they allocate a large portion of their marketing budget to this. Brands invest in celebrities who will represent them in order to build the image they want to create.
This study aimed to bring under spotlight the perceptions of Turkish customers regarding the use of celebrities in advertisements and marketing communication and try to understand their possible effects on subsequent purchasing decisions. In addition, consumers’ reactions and perceptions were investigated in the context of the product-celebrity match, to what extent the celebrity conforms to the concept of the advertisement and the celebrity-target audience match.
In order to achieve this purpose, a quantitative research was conducted as a case study concerning Mavi Jeans (textile company). Information was obtained through survey. The results from this case study are supported by relevant theories concerning the main subject. The most valuable result would be that instead of creating an advertisement around a celebrity in demand at the time, using a celebrity that fits the concept of the advertisement and feeds the concept rather than replaces it, that is celebrity endorsement, will lead to more striking and positive results.
Keywords: Celebrity endorsement, product-celebrity match, advertising.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6319116 Robot Control by ERPs of Brain Waves
Authors: K. T. Sun, Y. H. Tai, H. W. Yang, H. T. Lin
Abstract:
This paper presented the technique of robot control by event-related potentials (ERPs) of brain waves. Based on the proposed technique, severe physical disabilities can free browse outside world. A specific component of ERPs, N2P3, was found and used to control the movement of robot and the view of camera on the designed brain-computer interface (BCI). Users only required watching the stimuli of attended button on the BCI, the evoked potentials of brain waves of the target button, N2P3, had the greatest amplitude among all control buttons. An experimental scene had been constructed that the robot required walking to a specific position and move the view of camera to see the instruction of the mission, and then completed the task. Twelve volunteers participated in this experiment, and experimental results showed that the correct rate of BCI control achieved 80% and the average of execution time was 353 seconds for completing the mission. Four main contributions included in this research: (1) find an efficient component of ERPs, N2P3, for BCI control, (2) embed robot's viewpoint image into user interface for robot control, (3) design an experimental scene and conduct the experiment, and (4) evaluate the performance of the proposed system for assessing the practicability.
Keywords: Brain-computer interface (BCI), event-related potentials (ERPs), robot control, severe physical disabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601115 Doping Profile Measurement and Characterization by Scanning Capacitance Microscope for PocketImplanted Nano Scale n-MOSFET
Authors: Muhibul Haque Bhuyan, Farseem Mannan Mohammedy, Quazi Deen Mohd Khosru
Abstract:
This paper presents the doping profile measurement and characterization technique for the pocket implanted nano scale n-MOSFET. Scanning capacitance microscopy and atomic force microscopy have been used to image the extent of lateral dopant diffusion in MOS structures. The data are capacitance vs. voltage measurements made on a nano scale device. The technique is nondestructive when imaging uncleaved samples. Experimental data from the published literature are presented here on actual, cleaved device structures which clearly indicate the two-dimensional dopant profile in terms of a spatially varying modulated capacitance signal. Firstorder deconvolution indicates the technique has much promise for the quantitative characterization of lateral dopant profiles. The pocket profile is modeled assuming the linear pocket profiles at the source and drain edges. From the model, the effective doping concentration is found to use in modeling and simulation results of the various parameters of the pocket implanted nano scale n-MOSFET. The potential of the technique to characterize important device related phenomena on a local scale is also discussed.Keywords: Linear Pocket Profile, Pocket Implanted n-MOSFET, Scanning Capacitance Microscope, Atomic Force Microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024114 Pectoral Muscles Suppression in Digital Mammograms Using Hybridization of Soft Computing Methods
Authors: I. Laurence Aroquiaraj, K. Thangavel
Abstract:
Breast region segmentation is an essential prerequisite in computerized analysis of mammograms. It aims at separating the breast tissue from the background of the mammogram and it includes two independent segmentations. The first segments the background region which usually contains annotations, labels and frames from the whole breast region, while the second removes the pectoral muscle portion (present in Medio Lateral Oblique (MLO) views) from the rest of the breast tissue. In this paper we propose hybridization of Connected Component Labeling (CCL), Fuzzy, and Straight line methods. Our proposed methods worked good for separating pectoral region. After removal pectoral muscle from the mammogram, further processing is confined to the breast region alone. To demonstrate the validity of our segmentation algorithm, it is extensively tested using over 322 mammographic images from the Mammographic Image Analysis Society (MIAS) database. The segmentation results were evaluated using a Mean Absolute Error (MAE), Hausdroff Distance (HD), Probabilistic Rand Index (PRI), Local Consistency Error (LCE) and Tanimoto Coefficient (TC). The hybridization of fuzzy with straight line method is given more than 96% of the curve segmentations to be adequate or better. In addition a comparison with similar approaches from the state of the art has been given, obtaining slightly improved results. Experimental results demonstrate the effectiveness of the proposed approach.
Keywords: X-ray Mammography, CCL, Fuzzy, Straight line.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756113 An Enhanced SAR-Based Tsunami Detection System
Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah
Abstract:
Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.
Keywords: Detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178112 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference
Authors: Hussein Alahmer, Amr Ahmed
Abstract:
Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.
Keywords: CAD system, difference of feature, Fuzzy c means, Liver segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421111 Automatic Detection of Defects in Ornamental Limestone Using Wavelets
Authors: Maria C. Proença, Marco Aniceto, Pedro N. Santos, José C. Freitas
Abstract:
A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses – dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed.
Keywords: Automatic detection, wavelets, defects, fracture lines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171110 Ethically Integrating Robots in Elder Care
Authors: Suresh Lokiah, Samarth Suresh, Yashaswini Vismaya, Sudha Jamthe
Abstract:
The emerging trend of integrating robots into elderly care, particularly for assisting patients with dementia, holds the potential to greatly transform the sector. Assisted living facilities, which house a significant number of elderly individuals and dementia patients, constantly strive to engage their residents in stimulating activities. However, due to staffing shortages, they often rely on volunteers to introduce new activities. Despite the availability of social interaction, the residents are in desperate need of additional support. Robots designed for elder care are categorized based on their design and functionality. These categories include Companion Robots, Telepresence Robots, Health Monitoring Robots, and Rehab Robots. However, the integration of such robots raises significant ethical concerns, notably regarding privacy, autonomy, and the risk of dehumanization. Privacy issues arise when robots need to continually monitor patient activities. There is also a risk of patients becoming overly dependent on these robots, potentially undermining patients’ autonomy. Furthermore, the replacement of human touch with robotic interaction can lead to the dehumanization of care. This positional paper delves into the ethical considerations of incorporating robotic assistance in eldercare. It proposes a series of guidelines and strategies to ensure the ethical deployment of these robots. These guidelines suggest involving patients in the design and development process of robots and emphasize the critical need for human oversight to respect the dignity and rights of elderly and dementia patients. The paper also recommends implementing robust privacy measures, including secure data transmission and data anonymization. In conclusion, this paper offers a thorough examination of the ethical implications of using robotic assistance in elder care. It provides a strategic roadmap to ensure this technology is utilized ethically, thereby maximizing its potential benefits and minimizing any potential harm.
Keywords: Robots for eldercare, ethics, human-robot interaction, assisted living.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52109 3D Liver Segmentation from CT Images Using a Level Set Method Based on a Shape and Intensity Distribution Prior
Authors: Nuseiba M. Altarawneh, Suhuai Luo, Brian Regan, Guijin Tang
Abstract:
Liver segmentation from medical images poses more challenges than analogous segmentations of other organs. This contribution introduces a liver segmentation method from a series of computer tomography images. Overall, we present a novel method for segmenting liver by coupling density matching with shape priors. Density matching signifies a tracking method which operates via maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Density matching controls the direction of the evolution process and slows down the evolving contour in regions with weak edges. The shape prior improves the robustness of density matching and discourages the evolving contour from exceeding liver’s boundaries at regions with weak boundaries. The model is implemented using a modified distance regularized level set (DRLS) model. The experimental results show that the method achieves a satisfactory result. By comparing with the original DRLS model, it is evident that the proposed model herein is more effective in addressing the over segmentation problem. Finally, we gauge our performance of our model against matrices comprising of accuracy, sensitivity, and specificity.
Keywords: Bhattacharyya distance, distance regularized level set (DRLS) model, liver segmentation, level set method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340108 Qualitative Survey on Managing Building Maintenance Projects
Authors: Edmond W.M. Lam, Albert P.C. Chan, Daniel W.M. Chan
Abstract:
Buildings are one of the valuable assets to provide people with shelters for work, leisure and rest. After years of attacks by weather, buildings will deteriorate which need proper maintenance in order to fulfill the requirements and satisfaction of the users. Poorly managed buildings not just give a negative image to the city itself, but also pose potential risk hazards to the health and safety of the general public. As a result, the management of maintenance projects has played an important role in cities like Hong Kong where the problem of urban decay has drawn much attention. However, most research has focused on managing new construction, and little research effort has been put on maintenance projects. Given the short duration and more diversified nature of work, repair and maintenance works are found to be more difficult to monitor and regulate when compared with new works. Project participants may face with problems in running maintenance projects which should be investigated so that proper strategies can be established. This paper aims to provide a thorough analysis on the problems of running maintenance projects. A review of literature on the characteristics of building maintenance projects was firstly conducted, which forms a solid basis for the empirical study. Results on the problems and difficulties of running maintenance projects from the viewpoints of industry practitioners will also be delivered with a view to formulating effective strategies for managing maintenance projects successfully.Keywords: characteristics, problems, building maintenance, Hong Kong
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120107 Facial Expression Phoenix (FePh): An Annotated Sequenced Dataset for Facial and Emotion-Specified Expressions in Sign Language
Authors: Marie Alaghband, Niloofar Yousefi, Ivan Garibay
Abstract:
Facial expressions are important parts of both gesture and sign language recognition systems. Despite the recent advances in both fields, annotated facial expression datasets in the context of sign language are still scarce resources. In this manuscript, we introduce an annotated sequenced facial expression dataset in the context of sign language, comprising over 3000 facial images extracted from the daily news and weather forecast of the public tv-station PHOENIX. Unlike the majority of currently existing facial expression datasets, FePh provides sequenced semi-blurry facial images with different head poses, orientations, and movements. In addition, in the majority of images, identities are mouthing the words, which makes the data more challenging. To annotate this dataset we consider primary, secondary, and tertiary dyads of seven basic emotions of "sad", "surprise", "fear", "angry", "neutral", "disgust", and "happy". We also considered the "None" class if the image’s facial expression could not be described by any of the aforementioned emotions. Although we provide FePh as a facial expression dataset of signers in sign language, it has a wider application in gesture recognition and Human Computer Interaction (HCI) systems.Keywords: Annotated Facial Expression Dataset, Sign Language Recognition, Gesture Recognition, Sequenced Facial Expression Dataset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724106 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.
Keywords: Curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514105 Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells
Authors: Mohanapriya Subramanian, V. Raj
Abstract:
Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor as well as a separator between electrodes. Increasing concern over environmental protection, biopolymers gain tremendous interest owing to their eco-friendly bio-degradable nature. Pectin is a natural anionic polysaccharide which plays an essential part in regulating mechanical behavior of plant cell wall and it is extracted from outer cells of most of the plants. The aim of this study is to develop and demonstrate pectin based polymer composite membranes as methanol impermeable polymer electrolyte membranes for DMFCs. Pectin based nanocomposites membranes are prepared by solution-casting technique wherein pectin is blended with chitosan followed by the addition of optimal amount of sulphonic acid modified Titanium dioxide nanoparticle (S-TiO2). Nanocomposite membranes are characterized by Fourier Transform-Infra Red spectroscopy, Scanning electron microscopy, and Energy dispersive spectroscopy analyses. Proton conductivity and methanol permeability are determined into order to evaluate their suitability for DMFC application. Pectin-chitosan blends endow with a flexible polymeric network which is appropriate to disperse rigid S-TiO2 nanoparticles. Resulting nanocomposite membranes possess adequate thermo-mechanical stabilities as well as high charge-density per unit volume. Pectin-chitosan natural polymeric nanocomposite comprising optimal S-TiO2 exhibits good electrochemical selectivity and therefore desirable for DMFC application.Keywords: Biopolymers, fuel cells, nanocomposite, methanol crossover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207104 Myanmar Character Recognition Using Eight Direction Chain Code Frequency Features
Authors: Kyi Pyar Zaw, Zin Mar Kyu
Abstract:
Character recognition is the process of converting a text image file into editable and searchable text file. Feature Extraction is the heart of any character recognition system. The character recognition rate may be low or high depending on the extracted features. In the proposed paper, 25 features for one character are used in character recognition. Basically, there are three steps of character recognition such as character segmentation, feature extraction and classification. In segmentation step, horizontal cropping method is used for line segmentation and vertical cropping method is used for character segmentation. In the Feature extraction step, features are extracted in two ways. The first way is that the 8 features are extracted from the entire input character using eight direction chain code frequency extraction. The second way is that the input character is divided into 16 blocks. For each block, although 8 feature values are obtained through eight-direction chain code frequency extraction method, we define the sum of these 8 feature values as a feature for one block. Therefore, 16 features are extracted from that 16 blocks in the second way. We use the number of holes feature to cluster the similar characters. We can recognize the almost Myanmar common characters with various font sizes by using these features. All these 25 features are used in both training part and testing part. In the classification step, the characters are classified by matching the all features of input character with already trained features of characters.
Keywords: Chain code frequency, character recognition, feature extraction, features matching, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755103 Research on Landscape Pattern Revolution of Land Use in Fuxian Lake Basin Based on RS and GIS
Abstract:
Based on the remote image data of land use in the four periods of 1980, 1995, 2005 and 2015, this study quantitatively analyzed the dynamic variation of landscape transfer and landscape pattern in the Fuxian Lake basin by constructing a land use dynamic variation model and using ArcGIS 10.5 and Fragstats 4.2. The results indicate that: (1) From the perspective of land use landscape transfer, the intensity of land use is slowly rising from 1980 to 2015, and the main reduction landscape type is farmland and its net amount of transfer-out is the most among all transfer-outs, which is to 788.85 hm2, the main added landscape type is construction land and its net amount of transfer-in is the most, which is to 475.23 hm2. Meanwhile, the land use landscape variation in the stage of 2005-2015 showed the most severe among three periods when compared with other two stages. (2) From the perspective of land use landscape variation, significant spatial differences are shown, the changes in the north of the basin are significantly higher than that in the south, the west coast are apparently higher than the east. (3) From the perspective of landscape pattern index, the number of plaques is on the increase in the periods of 35 years in the basin, and there is little mutual interference between landscape patterns because the plaques are relatively discrete. Cultivated land showed a trend of fragmentation but constructive land showed trend of relative concentration. The sustainable development and biodiversity in this basin are under threat for the fragmented landscape pattern and the poorer connectivity.
Keywords: Land use, landscape pattern evolution, landscape pattern index, Fuxian Lake basin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586102 Design of Compliant Mechanism Based Microgripper with Three Finger Using Topology Optimization
Authors: R. Bharanidaran, B. T. Ramesh
Abstract:
High precision in motion is required to manipulate the micro objects in precision industries for micro assembly, cell manipulation etc. Precision manipulation is achieved based on the appropriate mechanism design of micro devices such as microgrippers. Design of a compliant based mechanism is the better option to achieve a highly precised and controlled motion. This research article highlights the method of designing a compliant based three fingered microgripper suitable for holding asymmetric objects. Topological optimization technique, a systematic method is implemented in this research work to arrive a topologically optimized design of the mechanism needed to perform the required micro motion of the gripper. Optimization technique has a drawback of generating senseless regions such as node to node connectivity and staircase effect at the boundaries. Hence, it is required to have post processing of the design to make it manufacturable. To reduce the effect of post processing stage and to preserve the edges of the image, a cubic spline interpolation technique is introduced in the MATLAB program. Structural performance of the topologically developed mechanism design is tested using finite element method (FEM) software. Further the microgripper structure is examined to find its fatigue life and vibration characteristics.
Keywords: Compliant mechanism, Cubic spline interpolation, FEM, Topology optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3581101 An Approach of Quantum Steganography through Special SSCE Code
Authors: Indradip Banerjee, Souvik Bhattacharyya, Gautam Sanyal
Abstract:
Encrypted messages sending frequently draws the attention of third parties, perhaps causing attempts to break and reveal the original messages. Steganography is introduced to hide the existence of the communication by concealing a secret message in an appropriate carrier like text, image, audio or video. Quantum steganography where the sender (Alice) embeds her steganographic information into the cover and sends it to the receiver (Bob) over a communication channel. Alice and Bob share an algorithm and hide quantum information in the cover. An eavesdropper (Eve) without access to the algorithm can-t find out the existence of the quantum message. In this paper, a text quantum steganography technique based on the use of indefinite articles (a) or (an) in conjunction with the nonspecific or non-particular nouns in English language and quantum gate truth table have been proposed. The authors also introduced a new code representation technique (SSCE - Secret Steganography Code for Embedding) at both ends in order to achieve high level of security. Before the embedding operation each character of the secret message has been converted to SSCE Value and then embeds to cover text. Finally stego text is formed and transmits to the receiver side. At the receiver side different reverse operation has been carried out to get back the original information.Keywords: Quantum Steganography, SSCE (Secret SteganographyCode for Embedding), Security, Cover Text, Stego Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109100 Promoting Social Advocacy through Digital Storytelling: The Case of Ocean Acidification
Authors: Chun Chen Yea, Wen Huei Chou
Abstract:
Many chemical changes in the atmosphere and the ocean are invisible to the naked eye, but they have profound impacts. These changes not only confirm the phenomenon of global carbon pollution, but also forewarn that more changes are coming. The carbon dioxide gases emitted from the burning of fossil fuels dissolve into the ocean and chemically react with seawater to form carbonic acid, which increases the acidity of the originally alkaline seawater. This gradual acidification is occurring at an unprecedented rate and will affect the effective formation of carapace of some marine organisms such as corals and crustaceans, which are almost entirely composed of calcium carbonate. The carapace of these organisms will become more dissoluble. Acidified seawater not only threatens the survival of marine life, but also negatively impacts the global ecosystem via the food chain. Faced with the threat of ocean acidification, all humans are duty-bound. The industrial sector outputs the highest level of carbon dioxide emissions in Taiwan, and the petrochemical industry is the major contributor. Ever since the construction of Formosa Plastics Group's No. 6 Naphtha Cracker Plant in Yunlin County, there have been many environmental concerns such as air pollution and carbon dioxide emission. The marine life along the coast of Yunlin is directly affected by ocean acidification arising from the carbon emissions. Societal change demands our willingness to act, which is what social advocacy promotes. This study uses digital storytelling for social advocacy and ocean acidification as the subject of a visual narrative in visualization to demonstrate the subsequent promotion of social advocacy. Storytelling can transform dull knowledge into an engaging narrative of the crisis faced by marine life. Digital dissemination is an effective social-work practice. The visualization promoting awareness on ocean acidification disseminated via social media platforms, such as Facebook and Instagram. Social media enables users to compose their own messages and share information across different platforms, which helps disseminate the core message of social advocacy.
Keywords: Digital storytelling, visualization, ocean acidification, social advocacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95399 Synthesis and Fluorescence Spectroscopy of Sulphonic Acid-Doped Polyaniline When Exposed to Oxygen Gas
Authors: S.F.S. Draman, R. Daik, A. Musa
Abstract:
Three sulphonic acid-doped polyanilines were synthesized through chemical oxidation at low temperature (0-5 oC) and potential of these polymers as sensing agent for O2 gas detection in terms of fluorescence quenching was studied. Sulphuric acid, dodecylbenzene sulphonic acid (DBSA) and camphor sulphonic acid (CSA) were used as doping agents. All polymers obtained were dark green powder. Polymers obtained were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, thermogravimetry analysis, elemental analysis, differential scanning calorimeter and gel permeation chromatography. Characterizations carried out showed that polymers were successfully synthesized with mass recovery for sulphuric aciddoped polyaniline (SPAN), DBSA-doped polyaniline (DBSA-doped PANI) and CSA-doped polyaniline (CSA-doped PANI) of 71.40%, 75.00% and 39.96%, respectively. Doping level of SPAN, DBSAdoped PANI and CSA-doped PANI were 32.86%, 33.13% and 53.96%, respectively as determined based on elemental analysis. Sensing test was carried out on polymer sample in the form of solution and film by using fluorescence spectrophotometer. Samples of polymer solution and polymer film showed positive response towards O2 exposure. All polymer solutions and films were fully regenerated by using N2 gas within 1 hour period. Photostability study showed that all samples of polymer solutions and films were stable towards light when continuously exposed to xenon lamp for 9 hours. The relative standard deviation (RSD) values for SPAN solution, DBSA-doped PANI solution and CSA-doped PANI solution for repeatability were 0.23%, 0.64% and 0.76%, respectively. Meanwhile RSD values for reproducibility were 2.36%, 6.98% and 1.27%, respectively. Results for SPAN film, DBSAdoped PANI film and CSA-doped PANI film showed the same pattern with RSD values for repeatability of 0.52%, 4.05% and 0.90%, respectively. Meanwhile RSD values for reproducibility were 2.91%, 10.05% and 7.42%, respectively. The study on effect of the flow rate on response time was carried out using 3 different rates which were 0.25 mL/s, 1.00 mL/s and 2.00 mL/s. Results obtained showed that the higher the flow rate, the shorter the response time.Keywords: conjugated polymer, doping, fluorescence quenching, oxygen gas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240098 Object Recognition on Horse Riding Simulator System
Authors: Kyekyung Kim, Sangseung Kang, Suyoung Chi, Jaehong Kim
Abstract:
In recent years, IT convergence technology has been developed to get creative solution by combining robotics or sports science technology. Object detection and recognition have mainly applied to sports science field that has processed by recognizing face and by tracking human body. But object detection and recognition using vision sensor is challenge task in real world because of illumination. In this paper, object detection and recognition using vision sensor applied to sports simulator has been introduced. Face recognition has been processed to identify user and to update automatically a person athletic recording. Human body has tracked to offer a most accurate way of riding horse simulator. Combined image processing has been processed to reduce illumination adverse affect because illumination has caused low performance in detection and recognition in real world application filed. Face has recognized using standard face graph and human body has tracked using pose model, which has composed of feature nodes generated diverse face and pose images. Face recognition using Gabor wavelet and pose recognition using pose graph is robust to real application. We have simulated using ETRI database, which has constructed on horse riding simulator.
Keywords: Horse riding simulator, Object detection, Object recognition, User identification, Pose recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209097 Automatic Detection of Breast Tumors in Sonoelastographic Images Using DWT
Authors: A. Sindhuja, V. Sadasivam
Abstract:
Breast Cancer is the most common malignancy in women and the second leading cause of death for women all over the world. Earlier the detection of cancer, better the treatment. The diagnosis and treatment of the cancer rely on segmentation of Sonoelastographic images. Texture features has not considered for Sonoelastographic segmentation. Sonoelastographic images of 15 patients containing both benign and malignant tumorsare considered for experimentation.The images are enhanced to remove noise in order to improve contrast and emphasize tumor boundary. It is then decomposed into sub-bands using single level Daubechies wavelets varying from single co-efficient to six coefficients. The Grey Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) features are extracted and then selected by ranking it using Sequential Floating Forward Selection (SFFS) technique from each sub-band. The resultant images undergo K-Means clustering and then few post-processing steps to remove the false spots. The tumor boundary is detected from the segmented image. It is proposed that Local Binary Pattern (LBP) from the vertical coefficients of Daubechies wavelet with two coefficients is best suited for segmentation of Sonoelastographic breast images among the wavelet members using one to six coefficients for decomposition. The results are also quantified with the help of an expert radiologist. The proposed work can be used for further diagnostic process to decide if the segmented tumor is benign or malignant.
Keywords: Breast Cancer, Segmentation, Sonoelastography, Tumor Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220796 Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion
Authors: Chiharu Okuma, Jun Murakami, Naoki Yamamoto
Abstract:
In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.Keywords: Singular value decomposition (SVD), higher-order SVD (HOSVD), higher-order tensor, outer product expansion, power method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156395 Non-Overlapping Hierarchical Index Structure for Similarity Search
Authors: Mounira Taileb, Sid Lamrous, Sami Touati
Abstract:
In order to accelerate the similarity search in highdimensional database, we propose a new hierarchical indexing method. It is composed of offline and online phases. Our contribution concerns both phases. In the offline phase, after gathering the whole of the data in clusters and constructing a hierarchical index, the main originality of our contribution consists to develop a method to construct bounding forms of clusters to avoid overlapping. For the online phase, our idea improves considerably performances of similarity search. However, for this second phase, we have also developed an adapted search algorithm. Our method baptized NOHIS (Non-Overlapping Hierarchical Index Structure) use the Principal Direction Divisive Partitioning (PDDP) as algorithm of clustering. The principle of the PDDP is to divide data recursively into two sub-clusters; division is done by using the hyper-plane orthogonal to the principal direction derived from the covariance matrix and passing through the centroid of the cluster to divide. Data of each two sub-clusters obtained are including by a minimum bounding rectangle (MBR). The two MBRs are directed according to the principal direction. Consequently, the nonoverlapping between the two forms is assured. Experiments use databases containing image descriptors. Results show that the proposed method outperforms sequential scan and SRtree in processing k-nearest neighbors.
Keywords: K-nearest neighbour search, multi-dimensional indexing, multimedia databases, similarity search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156394 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid
Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop
Abstract:
The present analysis considers the steady stagnation point flow and heat transfer towards a permeable shrinking sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow and a local heat generation within the boundary layer, with a heat generation rate proportional to (T-T)p Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the stretching/shrinking parameter λ, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value λc whose value depends on the value of M, K, and s. In the presence of internal heat absorption (Q<0) the surface heat transfer rate decreases with increasing p but increases with parameters Q and s when the sheet is either stretched or shrunk.
Keywords: Magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207193 Relevance Feedback within CBIR Systems
Authors: Mawloud Mosbah, Bachir Boucheham
Abstract:
We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.
Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 234292 Face Recognition Using Principal Component Analysis, K-Means Clustering, and Convolutional Neural Network
Authors: Zukisa Nante, Wang Zenghui
Abstract:
Face recognition is the problem of identifying or recognizing individuals in an image. This paper investigates a possible method to bring a solution to this problem. The method proposes an amalgamation of Principal Component Analysis (PCA), K-Means clustering, and Convolutional Neural Network (CNN) for a face recognition system. It is trained and evaluated using the ORL dataset. This dataset consists of 400 different faces with 40 classes of 10 face images per class. Firstly, PCA enabled the usage of a smaller network. This reduces the training time of the CNN. Thus, we get rid of the redundancy and preserve the variance with a smaller number of coefficients. Secondly, the K-Means clustering model is trained using the compressed PCA obtained data which select the K-Means clustering centers with better characteristics. Lastly, the K-Means characteristics or features are an initial value of the CNN and act as input data. The accuracy and the performance of the proposed method were tested in comparison to other Face Recognition (FR) techniques namely PCA, Support Vector Machine (SVM), as well as K-Nearest Neighbour (kNN). During experimentation, the accuracy and the performance of our suggested method after 90 epochs achieved the highest performance: 99% accuracy F1-Score, 99% precision, and 99% recall in 463.934 seconds. It outperformed the PCA that obtained 97% and KNN with 84% during the conducted experiments. Therefore, this method proved to be efficient in identifying faces in the images.
Keywords: Face recognition, Principal Component Analysis, PCA, Convolutional Neural Network, CNN, Rectified Linear Unit, ReLU, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51391 Developing a Research Culture in the Faculty of Engineering and Information Technology at the Central University of Technology, Free State: Implications for Knowledge Management
Authors: Mpho A. Mbeo, Patient Rambe
Abstract:
The 13th year of the Central University of Technology, Free State’s (CUT) transition from a vocational and professional training orientation institution (i.e. a technikon) into a university with a strong research focus has neither been a smooth nor an easy one. At the heart of this transition was the need to transform the psychological faculties of academic and research staffs compliment who were accustomed to training graduates for industrial placement. The lack of a research culture that fully embraces the strong solid ethos of conducting cutting-edge research needs to be addressed. The induction and socialisation of academic staff into the development and execution of cutting-edge research also required the provision of research support and the creation of a conducive academic environment for research, both for emerging and non-research active academics. Drawing on ten cases, consisting of four heads of departments, three seasoned researchers, and three novice researchers, this study explores the challenges faced in establishing a strong research culture at the university. Furthermore, it gives an account of the extent to which the current research interventions have addressed the perceivably “missing research culture”, and the implications of these interventions for knowledge management. Evidence suggests that the capability of an ideal institutional research environment, consisting of mentorship of novice researchers by seasoned researchers, balanced effort into teaching and research responsibilities, should be supported by strong research-oriented leadership. Furthermore, recruitment of research passionate staff, adoption of a salary structure that encourages the retention of excellent scholars should be matched by a coherent research incentive culture to growth research publication outputs. This is critical for building new knowledge and entrenching knowledge management founded on communities of practice and scholarly networking through the documentation and communication of research findings. The study concludes that the multiple policy documents set for the different domains of research may be creating pressure on researchers to engage research activities and increase output at the expense of research quality.
Keywords: Central University of Technology, performance, publication, research culture, university.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33690 Wildfires Assessed by Remote Sense Images and Burned Land Monitoring
Authors: M. C. Proença
Abstract:
The tools described in this paper enable the location of burned areas where took place the annihilation of natural habitats and establishes a baseline for major changes in forest ecosystems during recovery. Moreover, the result allows the follow up of the surface fuel loading, allowing the evaluation and guidance of restoration measures to remote areas by phased time planning. This case study implements the evaluation of burned areas that suffered successive wildfires in Portugal mainland during the summer of 2017, killing more than 60 people. The goal is to show that this evaluation can be done with remote sense data free of charges in a simple laptop, with open-source software, describing the not-so-simple methodology step by step, to make it accessible for local workers in the areas attained, where the availability of information is essential for the immediate planning of mitigation measures, such as restoring road access, allocate funds for the recovery of human dwellings and assess further needs for restoration of the ecological system. Wildfires also devastate forest ecosystems having a direct impact on vegetation cover and killing or driving away the animal population, besides loss of all crops in rural areas that are essential as local resources. The economic interests are also attained, as the pinewood burned becomes useless for the noblest applications, so its value decreases, and resin extraction ends for several years.
Keywords: Image processing, remote sensing, wildfires, burned areas, SENTINEL-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159089 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.
Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955