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Abstract—This paper presents an optimal and robust sliding mode
controller (SMC) to regulate the position of the knee joint angle
for patients suffering from knee injuries. The controller imitates
the role of active orthoses that produce the joint torques required
to overcome gravity and loading forces and regain natural human
movements. To this end, a mathematical model of the shank, the
lower part of the leg, is derived first and then used for the control
system design and computer simulations. The design of the controller
is carried out in optimal and multi-objective settings. Four objectives
are considered: minimization of the control effort and tracking error;
and maximization of the control signal smoothness and closed-loop
system’s speed of response. Optimal solutions in terms of the Pareto
set and its image, the Pareto front, are obtained. The results show
that there are trade-offs among the design objectives and many
optimal solutions from which the decision-maker can choose to
implement. Also, computer simulations conducted at different points
from the Pareto set and assuming knee squat movement demonstrate
competing relationships among the design goals. In addition, the
proposed control algorithm shows robustness in tracking a standard
gait signal when accounting for uncertainty in the shank’s parameters.

Keywords—Optimal control, multi-objective optimization, sliding
mode control, wearable knee exoskeletons.

I. INTRODUCTION

THE motion of the shank relative to the upper leg,

biomechanics behind the knee joint, and feasibility

of wearable knee exoskeletons have been receiving much

attention for two reasons: 1) knee injuries account for 41 % of

all sports-related injuries [1], and 2) there is an increase in the

number of elderlies who have difficulty standing and walking

due to weak muscles and thus require assistance by supplying

controlled torques via powered knee orthosis [2], [3].

Several control strategies for wearable knee exoskeletons

during gait have been proposed. For instance, a nonlinear

impedance reduction control (IRC) for minimizing human

lower limb effort during gait was introduced in [4]. The

control structure comprises three parts: a nonlinear joint

torque observer, a nonlinear disturbance observer-based SMC,

and desired admittance model. Theoretical analysis showed

that the IRC performs quite well and it is robust against

modeling uncertainties. Furthermore, experimental tests were

conducted on four subjects and demonstrated that the IRC

is quite effective through the acquisition of surface EMG

signals. Another study presented an adaptive oscillator-based

controller for a robotic lower-limb exoskeleton for patients

who had difficulty walking or getting up without assistance

due to weak muscles caused by aging [5]. Tests on two
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subjects demonstrated the feasibility of the proposed control

strategy. Another study aimed at assisting elderly people

during standing-up and walking by controlling the joint angle

of wearable and actuated exoskeleton was proposed in [2].

PID and fuzzy controllers were used to control the exoskeleton

actuators in this study. Computer simulations showed that the

exoskeleton improves the motion and reduces the amount of

torque required by the elderly. A tuned and a non-tuned PID

algorithm for controlling the relative angular position of the

shank with respect to the upper leg were introduced in [3].

Computer simulations of squat movement and normal gait

revealed that the tuned PID provides smoother tracking.

In practice, the control design involves multiple

requirements that are often conflicting. In the case of knee joint

angle regulation, for example, the closed-loop system should

be responsive and smooth, track the reference path fairly well,

and use minimal control energy. Therefore, the control system

design should be carried out in multi-objective settings

to optimize the control performance and simultaneously

address these design objectives. Both deterministic and

stochastic multi-objective optimization methods have been

proposed for this purpose. However, stochastic algorithms

are more appealing due to their simplicity and the fact

that they do not require smooth and convex cost functions,

approximate global solutions well [6], and are noise resistant

[7]. Dominant stochastic algorithms include the ACO (Ant

Colony Optimization, [8]), MOGA (Multiple Objective

Genetic Algorithm, [9]), PSO (Particle Swarm Optimization,

[10]), NSGA-II, SPEA2 (Strength Pareto Evolutionary

Algorithm, [11]), and NPGA-II (Niched Pareto Genetic

Algorithm, [12]). The NSGA-II algorithm is the most

widely used multi-objective optimization algorithm [13],

[14]. According to [15], the algorithm outperforms the other

methods in terms of Pareto front.

An extensive literature review proved that there is no

literature on the design of a multi-objective and optimal control

for knee joint angle during walking. As a result, the purpose

of this paper is to introduce a multi-objective optimal SMC to

control the position of the knee joint angle for people who

have difficulty moving their legs due to injuries or aging.

SMC is more effective than traditional PID controllers in

controlling knee orthosis [16]. The NSGA-II tunes the SMC

setup parameters to achieve minimum and smooth control

effort, tracking error, and response time (1 % settling time).

The following is how this paper is structured. Section II

introduces the shank’s mathematical model. Section III details

the design of the SMC. The multi-objective optimization

problem is formulated in Section IV. Discussion of the

optimization results is presented in Section V. Finally, Section
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Fig. 1 Biomechanical model of the tibial movement [3]

VI contains our closing remarks.

II. SHANK MATHEMATICAL MODEL

A pictorial representation of the shank biomechanical model

when the patient is laying in a supine position is shown in

Fig. 1. Following the work proposed in [3], we consider a

2D mathematical model of the shank movement, but only the

movement in the sagittal plane, because the motions in the

coronal plane are significantly smaller and can thus be ignored.

The model features two segments: 1) the femur (the upper

part of the leg) and 2) the shank (the lower part of the leg).

The femur and shank are joined by a revolute joint that is

powered by the torque τ , which mimics the torque applied

to the knee joint by the orthoses. In this paper, τ denotes the

control signal applied to the model. The angle θ represents the

shank angular position relative to the middle range of motion

(π/4), where the full range of motion is π/2. That is, θ = 0
indicates that the shank is at the middle range of motion, while

θ = π/4 corresponds to the position when the shank is at its

full extension. The model parameters and their values are listed

in Table I, where m, L, r, and g are the shank mass, shank

length, distance from the shank center of mass to the knee

joint axis, and gravitational acceleration, respectively.

TABLE I
MODEL PARAMETERS

Model Paramter Value
m 3.72 kg
g 9.8 m/s2

r 0.188 m
L 0.435 m
I 0.44 kgm2

B 6.75 Nms/rad
K 44.22 Nm/rad

Applying Newton’s second law for rotational mechanical

systems, the dynamics of the shank model when the subject

is laying in a supine position reads

Iθ̈(t) +Bθ̇(t) +Kθ(t) +mgr sin(θ +
π

4
) = τ(t) (1)

Here, I , B, and K denote the shank inertia around the knee

joint, the viscous damping coefficient of the knee joint, and

the stiffness coefficient of the knee joint, respectively. Table I

contains the values for these parameters.

III. SMC DESIGN

The first step in designing of an SMC is to select the type

and order of what is called the sliding mode surface (SMS)

such that the system under control remains on it and slides

to its stable equilibrium according to the dynamics specified

by this surface. In the second step, a reaching law is chosen

to ensure that the SMS is reached from a non-zero initial

condition. For control system design purposes, (1) is re-written

as

θ̈(t) = f(θ, θ̇) +Au(t), (2)

where, f(θ, θ̇) is given by

f(θ, θ̇) = 1/I(−Bθ̇(t)−Kθ(t)−mgr sin(θ +
π

4
)). (3)

The control signal u(t) = τ(t) and A is 1/I . The control

law u(t) can be derived by first constructing the SMS, s(t),
which is given by:

s(t) = kpe(t) + ė(t), (4)

Here, we choose a proportional-derivative (PD) SMS.

Although an SMS with an integral term may improve SMC

robustness and tracking, it is not considered because the

accumulation of tracking errors during rehabilitation training

may eventually result in injuries to the subject wearing the

orthosis [17]. In this equation, kp is the SMS proportional

gain that must satisfy the Hurwitz condition, kp > 0. The

tracking error e(t) and its first-time derivative read

e(t) = θ(t)− θd(t) (5)

ė(t) = θ̇(t)− θ̇d(t), (6)

where θ(t) is the actual angular position of the joint and θd(t)
is the desired. To derive the control law u(t), we first derive

the expression ṡ(t),

ṡ(t) = kpė(t) + ë(t)

= kpė(t) + θ̈(t)− θ̈d(t)

= kpė(t) + f(θ, θ̇) +Au(t)− θ̈d(t)

(7)

Second, we choose a reaching law such that the time

derivative of the Lyapunov function (V = (1/2)s2) is negative

and thus the closed loop system is stable. That is, the condition

sṡ < 0 is satisfied. To this end, the exponential reaching law,

which is given by (8), is selected.

ṡ = −μsign(s)− kes, μ > 0, k1 > 0, (8)

where, μ and ke are tunable parameters and must be

non-negative to ensure closed-loop system stability. The

exponential reaching law is chosen because it outperforms

both constant and power rate reaching laws [18]. In practical

applications, the sign(s) function is usually replaced by the

saturation function sat(s) to alleviate chattering [19], [20],

where sat(s) is given by

sat(s) =

⎧⎪⎨
⎪⎩
1, s > Δ

ks, |s| ≤ Δ

−1, s < −Δ

(9)
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where k = 1
Δ , and the Δ is called the boundary layer.

Replacing sign(s) by sat(s) and solving for u(t), the control

law reads

u(t) = 1
A [−kpė(t)− f(θ, θ̇) + θ̈d(t)
−μsat(s)− kes].

(10)

It is obvious that kp, μ, ke, and Δ determine the required

control effort and, as a result, affect the overall closed-loop

system performance. Furthermore, these parameters should be

optimally tuned to meet the requirements of the control system

design.

IV. MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

Because of their numerous practical applications, MOPs

have received a lot of attention. A MOP is defined

mathematically as

min
k∈D

{F(k)}, (11)

where F is the map that consists of the objective functions

fi : D → R
1 under consideration.

F : D → R
k, F(k) = [f1(k), . . . , fk(k)]. (12)

k ∈ D is a d-dimensional vector of design parameters. The

domain D ⊂ R
d can in general be expressed by inequality

and equality constraints:

D = {k ∈ R
d | gi(k) ≤ 0, i = 1, . . . , l,

and hj(k) = 0, j = 1, . . . ,m}. (13)

In MOPs, the concept of dominancy [21] is usually used to

define the optimal solutions. Such solutions dominate all the

other solutions but do not dominate each other.

A. Multi-objective Optimal Design of SMC

Three pieces of information need to be defined for any MOP.

They are the decision vector, objective space, and constraints.

The decision vector is given by

k = [ke, μ, kp,Δ]. (14)

The constraints on the design gains are given by:

Q = {k ∈ [0.1, 10]× [0.1, 10]×
[0.1, 10]× [0.0001, 0.1] ⊂ R

4}. (15)

The lower limits of the parameters were set according to the

constraints defined in (4) and (8) and the upper limits were

arbitrary selected. The design objective space is stated as

min
k∈Q

{Eu, Su, JIAE , ts}, (16)

where, Eu and Su are the objectives that describe the control

energy and its smoothness. They are provided by:

Eu =

∫ t

0

u2(τ)dτ, (17)

Su =
1

n
‖u0:n−1 − u1:n‖1 , (18)

where ‖.‖denotes the L1 norm and n is the size of samples.

The cost functions ts and JIAE are respectively the 1% settling

time and the integral absolute error which is given by,

JIAE =

∫ t

0

|θ(τ)− θd(τ)|dτ, (19)

To solve this multi-optimization problem, NSGA-II is used.

More information about this algorithm can be found in [22].

There is no explicit instruction on how to configure the

number of populations and generations for this algorithm.

However, according to the MATLAB documentation, the

population size can be configured in a variety of ways, with

the default population size being 15 multiplied by the number

of design variables nvar. Furthermore, the maximum number

of generations should not exceed 200 × nvar. In this study,

the population size and the number of generations are set to

200× nvar. Following the work proposed in [3], we assume

that the subject is performing a squat movement, which is

defined as θd(t) = (π/4)sin(2πt). The amplitude is set to

π/4 to cover θ range of motion, which is between 0 and π/2.

Since the average time of a step in normal conditions is about

1 second [23], the period of θd is set to 1.

V. RESULTS AND DISCUSSION

The output of NSGA-II in terms of the Pareto set and its

image (Pareto front), the controlled system response to a squat

movement and registered gait input, and the robustness of the

Pareto front to parametric variations are discussed here.

The Pareto set and front are shown in Figs. 2 and 3,

respectively. The color code in the figures represents the

levels of Su where the orange and dark blue colors represent

respectively the highest and lowest levels. The color code

provides better visualization for the Pareto set and shows

the corresponding regions on the Pareto front. The Pareto set

shows that smooth control signals are associated with small

control gains as is evident by the color in the figure. In SMC,

less chattering is achieved by increasing the boundary layer,

Δ, of the sat(s) function. However, Fig. 2 shows that even

at Δ = 0.1, the control signal can be non-smooth as long

as μ, kp, and ke are big. This is also clear by the color

code in Fig. 3 where large control values (Eu) are associated

with large variations (Su) in the control signal. The figure

also demonstrates conflicting relationships between Eu and

each of ts and JIAE . For example, when Eu = 1550.67,

ts and JIAE read 1.18 and 0.202, respectively. On the other

side, at the largest control effort, Eu = 5161.85, ts and

JIAE are respectively 0.4 and 0.031. The Pareto front also

record competing relationships among Su, ts, and JIAE . For

instance, when the switching in the control signal is the lowest,

Su = 1.60, ts and JIAE read 0.85 and 0.124, respectively. On

the other side, when the switching in the control signal is the

highest, Su = 2.71, ts and JIAE are respectively 0.4 and

0.031.

A. Response to a Squat Movement

The conflict among the design objectives can be also

demonstrated by the system response under the SMC at
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Fig. 2 2D visualization of the Pareto set; the color coding is

mapped to the normalized value of Su such that blue is the

lowest and orange is the highest

Fig. 3 3D visualization of the Pareto front; the color coding

is mapped to the normalized value of Su such that blue is

the lowest and orange is the highest; Pi, Pn, and Pf are

the ideal, knee, and far point, respectively.

different points. Here, we choose to show the response

at min(ts) and max(ts) (see Fig. 4), min(JIAE) and

max(JIAE) (see Fig. 5), min(Eu) and max(Eu), depicted

in Fig. 6; and min(Su) and max(Su) (refer to Fig. 7) when

the subject is doing a squat movement. The figures show that

when the system speed of response is high and the trajectory

tracking is the best (Figs. (4)-a, (5)-a, (6)-b, and (7)-b), Eu

and Su are at their highest values as demonstrated by the

numerical values in the captions of these figures. On the other

side, controlled system responses that are slow and have large

tracking errors occur at small control effort and thus small

variations in the control signal as shown in Figs. (4)-b, (5)-b,

(6)-a, and (7)-a.

Three points are labeled on the Pareto front. The point Pi

marks the location where all cost functions are the smallest

and is thus an ideal solution not on the Pareto frontier while

Pn is called the knee point and is the closest to Pi compared

to the other point on the Pareto front. Pf is a point on the

Pareto front and the furthest from Pi. From an implementation

perspective, Pn could be more attractive to the decision-maker

Fig. 4 Closed-loop response to a squat movement at (a) min

(ts) where

[ke, μ, kp,Δ] = [9.987211, 9.982392, 9.992594, 0.099795]
and [Eu, Su, JIAE , ts] =

[5158.772796, 2.712251, 0.031567, 0.400000], and (b) max

(ts) where

[ke, μ, kp,Δ] = [4.491859, 1.903205, 3.750269, 0.000106]
and [Eu, Su, JIAE , ts] =

[1572.877423, 1.623880, 0.229350, 1.350000]

Fig. 5 Closed-loop response to a squat movement at (a) min

(JIAE) where

[ke, μ, kp,Δ] = [9.987289, 9.989739, 9.989376, 0.099794]
and [Eu, Su, JIAE , ts] =

[5161.856626, 2.713218, 0.031565, 0.400000], and (b) max

(JIAE) where

[ke, μ, kp,Δ] = [4.491859, 1.903205, 3.750269, 0.000106]
and [Eu, Su, JIAE , ts] =

[1572.877423, 1.623880, 0.229350, 1.350000]

than Pf since it is the closest to the ideal solution. These two

points explain the properties of the Pareto front. The response

of the closed-loop system to a registered gait input at these

points is discussed next.

B. Response to Gait Input

In addition to testing the controller response to squat

movement, the second set of simulations was conducted to

examine the response to a normal gait movement. The normal
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Fig. 6 Closed-loop response to a squat movement at (a) min

(Eu) where

[ke, μ, kp,Δ] = [3.574013, 2.922288, 4.632296, 0.000106]
and [Eu, Su, JIAE , ts] =

[1550.679241, 1.722696, 0.202041, 1.180000], and (b) max

(Eu) where

[ke, μ, kp,Δ] = [9.987289, 9.989739, 9.989376, 0.099794]
and [Eu, Su, JIAE , ts] =

[5161.856626, 2.713218, 0.031565, 0.400000]

Fig. 7 Closed-loop response to a squat movement at (a) min

(Su) where

[ke, μ, kp,Δ] = 4.278734, 1.185731, 7.755477, 0.000105] and

[Eu, Su, JIAE , ts] =
[1613.472496, 1.602372, 0.124205, 0.850000], and (b) max

(Su) where

[ke, μ, kp,Δ] = [9.987289, 9.989739, 9.989376, 0.099794]
and [Eu, Su, JIAE , ts] =

[5161.856626, 2.713218, 0.031565, 0.400000]

gait signal was created using a piecewise defined function that

contained two sine functions that were set to interchange at

0.5 second intervals, in an attempt to mimic the reference gait

signal in [3]. The response of the controller was observed at

Pn and Pf . From Fig. 8, it is clear that Pn has the better

response, taking around 0.59 seconds to track the gait signal.

On the other side, the controlled system response at Pf takes

about 1.18 second to be within ±1% of the desired trajectory.

To put it another way, the control algorithm successfully tracks

the reference signal in both cases. However, the control effort

at Pn is bigger than that at Pf as evident in Fig. 9 and by

the objective values reported in the caption of Fig. 8.

C. Robustness to Parametric Variations

In realistic applications, the shank parameters will not be

consistent in every person, so the controller needs to be

capable of producing accurate responses for a variation of

parameters. To account for uncertainty in shank parameters

from one person to another, random values of each model

parameter were generated using a normal Gaussian distribution

for each of I , B, K, L, r, and m with the mean parameters

set as the predefined shank parametric values, and a standard

deviation of ±20% of each given mean parameter [24]. At

each time point, 100 runs were performed, resulting in 100

uncertainty values of each parameter, at minimum energy cost

(min(Eu)), where the robustness of the controlled system is

the weakest. Then the controller response for the uncertainty

values and mean values was compared to the normal gait

signal as shown in Fig. 10. It can be noted that the control

algorithm is robust against parametric variation, and the

response matches the gait signal at just over 0.5 seconds

and closely replicates the response speed we obtained for the

predefined shank parameters.

Fig. 8 Closed-loop response to normal gait at (a) Pn where

[ke, μ, kp,Δ] = 9.160440, 1.862266, 9.184981, 0.000105] and

[Eu, Su, JIAE , ts] =
[2068.580991, 2.619800, 0.134704, 0.590000], and (b) Pf

where

[ke, μ, kp,Δ] = 4.491859, 1.903205, 3.750269, 0.000106] and

[Eu, Su, JIAE , ts] =
[1790.875131, 2.554519, 0.252310, 1.180000]

VI. CONCLUDING REMARKS

In conclusion, the SMC designed in optimal and

multi-objective settings performs well and produces a

closed-loop response that tracks the knee joint angle

effectively for both squat movement and normal gait. The

optimization results display optimal and trade-off controllers

from which the decision-maker can select. Furthermore,

the proposed control method is robust against parametric

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:18, No:1, 2024 

13International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

1,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

45
1.

pd
f



Fig. 9 Control signal with respect to time at (a) Pn and (b)

Pf

Fig. 10 Closed-loop response to normal gait at min(Eu)
with an uncertainty of shank parameters showing the 100

runs of θun in relation to θd and θ

uncertainty. However, some work still needs to be done to

incorporate the dynamics of orthoses into control design and

computer simulations.
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