Search results for: professional training level
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4436

Search results for: professional training level

2456 E-Learning Recommender System Based on Collaborative Filtering and Ontology

Authors: John Tarus, Zhendong Niu, Bakhti Khadidja

Abstract:

In recent years, e-learning recommender systems has attracted great attention as a solution towards addressing the problem of information overload in e-learning environments and providing relevant recommendations to online learners. E-learning recommenders continue to play an increasing educational role in aiding learners to find appropriate learning materials to support the achievement of their learning goals. Although general recommender systems have recorded significant success in solving the problem of information overload in e-commerce domains and providing accurate recommendations, e-learning recommender systems on the other hand still face some issues arising from differences in learner characteristics such as learning style, skill level and study level. Conventional recommendation techniques such as collaborative filtering and content-based deal with only two types of entities namely users and items with their ratings. These conventional recommender systems do not take into account the learner characteristics in their recommendation process. Therefore, conventional recommendation techniques cannot make accurate and personalized recommendations in e-learning environment. In this paper, we propose a recommendation technique combining collaborative filtering and ontology to recommend personalized learning materials to online learners. Ontology is used to incorporate the learner characteristics into the recommendation process alongside the ratings while collaborate filtering predicts ratings and generate recommendations. Furthermore, ontological knowledge is used by the recommender system at the initial stages in the absence of ratings to alleviate the cold-start problem. Evaluation results show that our proposed recommendation technique outperforms collaborative filtering on its own in terms of personalization and recommendation accuracy.

Keywords: Collaborative filtering, e-learning, ontology, recommender system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3117
2455 The Relationship between Motivation for Physical Activity and Level of Physical Activity over Time

Authors: Keyvan Molanorouzi, Selina Khoo, Tony Morris

Abstract:

In recent years, there has been a decline in physical activity among adults. Motivation has been shown to be a crucial factor in maintaining physical activity. The purpose of this study was to whether PA motives measured by the Physical Activity and Leisure Motivation Scale PALMS predicted the actual amount of PA at a later time to provide evidence for the construct validity of the PALMS. A quantitative, cross-sectional descriptive research design was employed. The Demographic Form, PALMS, and International Physical Activity Questionnaire Short form (IPAQ-S) questionnaires were used to assess motives and amount for physical activity in adults on two occasions. A sample of 489 male undergraduate students aged 18 to 25 years (mean ±SD; 22.30±8.13 years) took part in the study. Participants were divided into three types of activities, namely exercise, racquet sport, and team sports and female participants only took part in one type of activity, namely team sports. After 14 weeks, all 489 undergraduate students who had filled in the initial questionnaire (Occasion 1) received the questionnaire via email (Occasion 2). Of the 489 students, 378 males emailed back the completed questionnaire. The results showed that not only were pertinent sub-scales of PALMS positively related to amount of physical activity, but separate regression analyses showed the positive predictive effect of PALMS motives for amount of physical activity for each type of physical activity among participants. This study supported the construct validity of the PALMS by showing that the motives measured by PALMS did predict amount of PA. This information can be obtained to match people with specific sport or activity which in turn could potentially promote longer adherence to the specific activity.

Keywords: Physical activity, motivation, the level of physical activity, types of physical activities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3598
2454 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds

Authors: Samit Ari, Goutam Saha

Abstract:

Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.

Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
2453 Delineating Students’ Speaking Anxieties and Assessment Gaps in Online Speech Performances

Authors: Mary Jane B. Suarez

Abstract:

Speech anxiety is innumerable in any traditional communication classes especially for ESL students. The speech anxiety intensifies when communication skills assessments have taken its toll in an online mode of learning due to the perils of the COVID-19 virus. Teachers and students have experienced vast ambiguity on how to realize a still effective way to teach and learn various speaking skills amidst the pandemic. This mixed method study determined the factors that affected the public speaking skills of students in online performances, delineated the assessment gaps in assessing speaking skills in an online setup, and recommended ways to address students’ speech anxieties. Using convergent parallel design, quantitative data were gathered by examining the desired learning competencies of the English course including a review of the teacher’s class record to analyze how students’ performances reflected a significantly high level of anxiety in online speech delivery. Focus group discussion was also conducted for qualitative data describing students’ public speaking anxiety and assessment gaps. Results showed a significantly high level of students’ speech anxiety affected by time constraints, use of technology, lack of audience response, being conscious of making mistakes, and the use of English as a second language. The study presented recommendations to redesign curricular assessments of English teachers and to have a robust diagnosis of students’ speaking anxiety to better cater to the needs of learners in attempt to bridge any gaps in cultivating public speaking skills of students as educational institutions segue from the pandemic to the post-pandemic milieu.

Keywords: Blended learning, communication skills assessment, online speech delivery, public speaking anxiety, speech anxiety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178
2452 Feasibility Study on the Use of HEMS for Thermal Comfort and Energy Saving in Japanese Residential Buildings

Authors: K. C. Rajan, H. B. Rijal, Kazui Yoshida, Masanori Shukuya

Abstract:

The electricity consumption in the Japanese household sector has increased with higher rate than that of other sectors. This may be because of aging and information oriented society that requires more electrical appliances to make the life better and easier, under this circumstances, energy saving is one of the essential necessity in Japanese society. To understand the way of energy use and demand response of the residential occupants, it is important to understand the structure of energy used. Home Energy Management System (HEMS) may be used for understanding the pattern and the structure of energy used. HEMS is a visualization system of the energy usage by connecting the electrical equipment in the home and thereby automatically control the energy use in each device, so that the energy saving is achieved. Therefore, the HEMS can provide with the easiest way to understand the structure of energy use. The HEMS has entered the mainstream of the Japanese market. The objective of this study is to understand the pattern of energy saving and cost saving in different regions including Japan during HEMS use. To observe thermal comfort level of HEMS managed residential buildings in Japan, the field survey was made and altogether, 1534 votes from 37 occupants related to thermal comfort, occupants’ behaviors and clothing insulation were collected and analyzed. According to the result obtained, approximately 17.9% energy saving and 8.9% cost saving is possible if HEMS is applied effectively. We found the thermal sensation and overall comfort level of the occupants is high in the studied buildings. The occupants residing in those HEMS buildings are satisfied with the thermal environment and they have accepted it. Our study concluded that the significant reduction in Japanese residential energy use can be achieved by the proper utilization of the HEMS. Better thermal comfort is also possible with the use of HEMS if energy use is managed in a rationally effective manner.

Keywords: Energy reduction, thermal comfort, HEMS market, thermal environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
2451 Evaluation of Model-Based Code Generation for Embedded Systems–Mature Approach for Development in Evolution

Authors: Nikolay P. Brayanov, Anna V. Stoynova

Abstract:

Model-based development approach is gaining more support and acceptance. Its higher abstraction level brings simplification of systems’ description that allows domain experts to do their best without particular knowledge in programming. The different levels of simulation support the rapid prototyping, verifying and validating the product even before it exists physically. Nowadays model-based approach is beneficial for modelling of complex embedded systems as well as a generation of code for many different hardware platforms. Moreover, it is possible to be applied in safety-relevant industries like automotive, which brings extra automation of the expensive device certification process and especially in the software qualification. Using it, some companies report about cost savings and quality improvements, but there are others claiming no major changes or even about cost increases. This publication demonstrates the level of maturity and autonomy of model-based approach for code generation. It is based on a real live automotive seat heater (ASH) module, developed using The Mathworks, Inc. tools. The model, created with Simulink, Stateflow and Matlab is used for automatic generation of C code with Embedded Coder. To prove the maturity of the process, Code generation advisor is used for automatic configuration. All additional configuration parameters are set to auto, when applicable, leaving the generation process to function autonomously. As a result of the investigation, the publication compares the quality of generated embedded code and a manually developed one. The measurements show that generally, the code generated by automatic approach is not worse than the manual one. A deeper analysis of the technical parameters enumerates the disadvantages, part of them identified as topics for our future work.

Keywords: Embedded code generation, embedded C code quality, embedded systems, model-based development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
2450 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: Human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, Prior distribution and approximate posterior distribution, KTH dataset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006
2449 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar

Abstract:

Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.

Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
2448 Absence of Leave and Job Morality in the ICU

Authors: Li-Ping Hsiao, Feng-Chuan Pan

Abstract:

Leave of absence is important in maintaining a good status of human resource quality. Allowing the employees temporarily free from the routine assignments can vitalize the workers- morality and productivity. This is particularly critical to secure a satisfactory service quality for healthcare professionals of which were typically featured with labor intensive and complicated works to perform. As one of the veteran hospitals that were found and operated by the Veteran Department of Taiwan, the nursing staff of the case hospital was squeezed to an extreme minimum level under the pressure of a tight budgeting. Leave of absence on schedule became extremely difficult, especially for the intensive care units (ICU), in which required close monitoring over the cared patients, and that had more easily driven the ICU nurses nervous. Even worse, the deferred leaves were more than 10 days at any time in the ICU because of a fluctuating occupancy. As a result, these had brought a bad setback to this particular nursing team, and consequently defeated the job performance and service quality. To solve this problem and accordingly to strengthen their morality, a project team was organized across different departments specific for this. Sufficient information regarding jobs and positions requirements, labor resources, and actual working hours in detail were collected and analyzed in the team meetings. Several alternatives were finalized. These included job rotating, job combination, leave on impromptu and cross-departmental redeployment. Consequently, the deferred leave days sharply reduced 70% to a level of 3 or less days. This improvement had not only provided good shelter for the ICU nurses that improved their job performance and patient safety but also encouraged the nurses active participating of a project and learned the skills of solving problems with colleagues.

Keywords: Information, job rotating, human resource, intensive care unit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
2447 Clinical Parameters Response to Low-Level Laser versus Monochromatic Near-Infrared Photo Energy in Diabetic Patients with Peripheral Neuropathy

Authors: Abeer A. Abdelhamed

Abstract:

Background: Diabetic sensorimotor polyneuropathy (DSP) is one of the most common microvascular complications of type 2 diabetes. Loss of sensation is thought to contribute to a lack of static and dynamic stability and increased risk of falling. Purpose: The purpose of this study was to compare the effects of low-level laser (LLL) and monochromatic near-infrared photo energy (MIRE) on pain, cutaneous sensation, static stability, and index of lower limb blood flow in diabetic patients with peripheral neuropathy. Methods: Forty diabetic patients with peripheral neuropathy were recruited for participation in this study. They were divided into two groups: The MIRE group, which contained 20 patients, and the LLL group, which contained 20 patients. All patients who participated in the study had been subjected to various physical assessment procedures, including pain, cutaneous sensation, Doppler flow meter, and static stability assessments. The baseline measurements were followed by treatment sessions that were conducted twice a week for six successive weeks. Results: The statistical analysis of the data revealed significant improvement of pain in both groups, with significant improvement in cutaneous sensation and static balance in the MIRE group compared to the LLL group; on the other hand, the results showed no significant differences in lower limb blood flow between the groups. Conclusion: LLL and MIRE can improve painful symptoms in patients with diabetic neuropathy. On the other hand, MIRE is also useful in improving cutaneous sensation and static stability in patients with diabetic neuropathy.

Keywords: Diabetic neuropathy, Doppler flow meter, –Lowlevel laser, Monochromatic near-infrared photo energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
2446 Efficient Boosting-Based Active Learning for Specific Object Detection Problems

Authors: Thuy Thi Nguyen, Nguyen Dang Binh, Horst Bischof

Abstract:

In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach.

Keywords: Computer vision, object detection, online boosting, active learning, labeling complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
2445 Primary School Teachers’ Conceptual and Procedural Knowledge of Rational Number and Its Effects on Pupils’ Achievement in Rational Numbers

Authors: R. M. Kashim

Abstract:

The study investigated primary school teachers’ conceptual and procedural knowledge of rational numbers and its effects on pupil’s achievement in rational numbers. Specifically, primary school teachers’ level of conceptual knowledge about rational numbers, primary school teachers’ level of procedural knowledge about rational numbers, and the effects of teachers conceptual and procedural knowledge on their pupils understanding of rational numbers in primary schools is investigated. The study was carried out in Bauchi metropolis in the Bauchi state of Nigeria. The design of the study was a multi-stage design. The first stage was a descriptive design. The second stage involves a pre-test, post-test only quasi-experimental design. Two instruments were used for the data collection in the study. These were Conceptual and Procedural knowledge test (CPKT) and Rational number achievement test (RAT), the population of the study comprises of three (3) mathematics teachers’ holders of Nigerian Certificate in Education (NCE) teaching primary six and 210 pupils in their intact classes were used for the study. The data collected were analyzed using mean, standard deviation, analysis of variance, analysis of covariance and t- test. The findings indicated that the pupils taught rational number by a teacher that has high conceptual and procedural knowledge understand and perform better than the pupil taught by a teacher who has low conceptual and procedural knowledge of rational number. It is, therefore, recommended that teachers in primary schools should be encouraged to enrich their conceptual knowledge of rational numbers. Also, the superiority performance of teachers in procedural knowledge in rational number should not become an obstruction of understanding. Teachers Conceptual and procedural knowledge of rational numbers should be balanced so that primary school pupils will have a view of better teaching and learning of rational number in our contemporary schools.

Keywords: Achievement, conceptual knowledge, procedural knowledge, rational numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
2444 Effects of Roughness on Forward Facing Step in an Open Channel

Authors: S. M. Rifat, André L. Marchildon, Mark F. Tachie

Abstract:

Experiments were performed to investigate the effects of roughness on the reattachment and redevelopment regions over a 12 mm forward facing step (FFS) in an open channel flow. The experiments were performed over an upstream smooth wall and a smooth FFS, an upstream wall coated with sandpaper 36 grit and a smooth FFS and an upstream rough wall produced from sandpaper 36 grit and a FFS coated with sandpaper 36 grit. To investigate only the wall roughness effects, Reynolds number, Froude number, aspect ratio and blockage ratio were kept constant. Upstream profiles showed reduced streamwise mean velocities close to the rough wall compared to the smooth wall, but the turbulence level was increased by upstream wall roughness. The reattachment length for the smooth-smooth wall experiment was 1.78h; however, when it is replaced with rough-smooth wall the reattachment length decreased to 1.53h. It was observed that the upstream roughness increased the physical size of contours of maximum turbulence level; however, the downstream roughness decreased both the size and magnitude of contours in the vicinity of the leading edge of the step. Quadrant analysis was performed to investigate the dominant Reynolds shear stress contribution in the recirculation region. The Reynolds shear stress and turbulent kinetic energy profiles after the reattachment showed slower recovery compared to the streamwise mean velocity, however all the profiles fairly collapse on their corresponding upstream profiles at x/h = 60. It was concluded that to obtain a complete collapse several more streamwise distances would be required.

Keywords: Forward facing step, open channel, separated and reattached turbulent flows, wall roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
2443 System Identification with General Dynamic Neural Networks and Network Pruning

Authors: Christian Endisch, Christoph Hackl, Dierk Schröder

Abstract:

This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.

Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
2442 Intelligent Neural Network Based STLF

Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi

Abstract:

Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Keywords: Feed-forward Large Neural Network, Short-TermLoad Forecasting, Continuous Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
2441 QSAR Studies of Certain Novel Heterocycles Derived from Bis-1, 2, 4 Triazoles as Anti-Tumor Agents

Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi

Abstract:

In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.

Keywords: 3D QSAR, CoMSIA, Triazoles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
2440 A Comparative Study of Indoor Radon Concentrations between Dwellings and Workplaces in the Ko Samui District, Surat Thani Province, Southern Thailand

Authors: Kanokkan Titipornpun, Tripob Bhongsuwan, Jan Gimsa

Abstract:

The Ko Samui district of Surat Thani province is located in the high amounts of equivalent uranium in the ground surface that is the source of radon. Our research in the Ko Samui district aimed at comparing the indoor radon concentrations between dwellings and workplaces. Measurements of indoor radon concentrations were carried out in 46 dwellings and 127 workplaces, using CR-39 alpha-track detectors in closed-cup. A total of 173 detectors were distributed in 7 sub-districts. The detectors were placed in bedrooms of dwellings and workrooms of workplaces. All detectors were exposed to airborne radon for 90 days. After exposure, the alpha tracks were made visible by chemical etching before they were manually counted under an optical microscope. The track densities were assumed to be correlated with the radon concentration levels. We found that the radon concentrations could be well described by a log-normal distribution. Most concentrations (37%) were found in the range between 16 and 30 Bq.m-3. The radon concentrations in dwellings and workplaces varied from a minimum of 11 Bq.m-3 to a maximum of 305 Bq.m-3. The minimum (11 Bq.m-3) and maximum (305 Bq.m-3) values of indoor radon concentrations were found in a workplace and a dwelling, respectively. Only for four samples (3%), the indoor radon concentrations were found to be higher than the reference level recommended by the WHO (100 Bq.m-3). The overall geometric mean in the surveyed area was 32.6±1.65 Bq.m-3, which was lower than the worldwide average (39 Bq.m-3). The statistic comparison of the geometric mean indoor radon concentrations between dwellings and workplaces showed that the geometric mean in dwellings (46.0±1.55 Bq.m-3) was significantly higher than in workplaces (28.8±1.58 Bq.m-3) at the 0.05 level. Moreover, our study found that the majority of the bedrooms in dwellings had a closed atmosphere, resulting in poorer ventilation than in most of the workplaces that had access to air flow through open doors and windows at daytime. We consider this to be the main reason for the higher geometric mean indoor radon concentration in dwellings compared to workplaces.

Keywords: CR-39 detector, indoor radon, radon in dwelling, radon in workplace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
2439 Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality

Authors: Guojian Cheng, Tianshi Liu, Jiaxin Han, Zheng Wang

Abstract:

The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen-s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author-s model: TGCS. It is ended with some testing results comparison and conclusions.

Keywords: Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
2438 The Effects of Physical Activity and Serotonin on Depression, Anxiety, Body Image and Mental Health

Authors: Sh. Khoshemehry, M. E. Bahram, M. J. Pourvaghar

Abstract:

Sport has found a special place as an effective phenomenon in all societies of the contemporary world. The relationship between physical activity and exercise with different sciences has provided new fields for human study. The range of issues related to exercise and physical education is such that it requires specialized sciences and special studies. In this article, the psychological and social sections of exercise have been investigated for children and adults. It can be used for anyone in different age groups. Exercise and regular physical movements have a great impact on the mental and social health of the individual in addition to body health. It affects the individual's adaptability in society and his/her personality. Exercise affects the treatment of diseases such as depression, anxiety, stress, body image, and memory. Exercise is a safe haven for young people to achieve the optimum human development in its shelter. The effects of sensorimotor skills on mental actions and mental development are such a way that many psychologists and sports science experts believe these activities should be included in training programs in the first place. Familiarity of students and scholars with different programs and methods of sensorimotor activities not only causes their mental actions; but also increases mental health and vitality, enhances self-confidence and, therefore, mental health.

Keywords: Anxiety, mental health, physical activity, serotonin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
2437 Heat-treated or Raw Sunflower Seeds in Lactating Dairy Cows Diets: Effects on Milk Fatty Acids Profile and Milk Production

Authors: H. Mansoori, A. Aghazadeh, K. Nazeradl

Abstract:

The objective of this study was to investigate the effects of dietary supplementation with raw or heat-treated sunflower oil seed with two levels of 7.5% or 15% on unsaturated fatty acids in milk fat and performances of high-yielding lactating cows. Twenty early lactating Holstein cows were used in a complete randomized design. Treatments included: 1) CON, control (without sunflower oil seed). 2) LS-UT, 7.5% raw sunflower oil seed. 3) LS-HT, 7.5% heat-treated sunflower oil seed. 4) HS-UT, 15% raw sunflower oil seed. 5) HS-HT, 15% heat-treated sunflower oil seed. Experimental period lasted for 4 wk, with first 2 wk used for adaptation to the diets. Supplementation with 7.5% raw sunflower seed (LS-UT) tended to decrease milk yield, with 28.37 kg/d compared with the control (34.75 kg/d). Milk fat percentage was increased with the HS-UT treatment that obtained 3.71% compared with CON that was 3.39% and without significant different. Milk protein percent was decreased high level sunflower oil seed treatments (15%) with 3.18% whereas CON treatment is caused 3.40% protein. The cows fed added low sunflower heat-treated (LS-HT) produced milk with the highest content of total unsaturated fatty acid with 32.59 g/100g of milk fat compared with the HS-UT with 23.59 g/100g of milk fat. Content of C18 unsaturated fatty acids in milk fat increased from 21.68 g/100g of fat in the HS-UT to 22.50, 23.98, 27.39 and 30.30 g/100g of fat from the cow fed HS-HT, CON, LS-UT and LS-HT treatments, respectively. C18:2 isomers of fatty acid in milk were greater by LSHT supplementation with significant effect (P < 0.05). Total of C18 unsaturated fatty acids content was significantly higher in milk of animal fed added low heat-treated sunflower (7.5%) than those fed with high sunflower. In all, results of this study showed that diet cow's supplementation with sunflower oil seed tended to reduce milk production of lactating cows but can improve C18 UFA (Unsaturated Fatty Acid) content in milk fat. 7.5% level of sunflower oil seed that heated seemed to be the optimal source to increase UFA production.

Keywords: Fatty acid profile, milk production, sunflower seed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
2436 Neuropalliative Care in Patients with Progressive Neurological Disease in Czech Republic: Study Protocol

Authors: R. Bužgová, R. Kozáková, M. Škutová, M. Bar, P. Ressner, P. Bártová

Abstract:

Introduction: Currently, there has been an increasing concern about the provision of palliative care in non-oncological patients in both professional literature and clinical practice. However, there is not much scientific information on how to provide neurological and palliative care together. The main objective of the project is to create and to verify a concept of neuro-palliative and rehabilitative care for patients with selected neurological diseases in an advanced stage of the disease and also to evaluate bio-psychosocial and spiritual needs of these patients and their caregivers related to the quality of life using created standardized tools. Methodology: Triangulation of research methods (qualitative and quantitative) will be used. A concept of care and assessment tools will be developed by analyzing interviews and focus groups. Qualitative data will be analyzed using grounded theory. The concept of care will be tested in the context of the intervention study. Using quantitative analysis, we will assess the effect of an intervention provided on the saturation of needs, quality of life, and quality of care. A research sample will be made up of the patients with selected neurological diseases (Parkinson´s syndrome, motor neuron disease, multiple sclerosis, Huntington’s disease), together with patients´ family members. Based on the results, educational materials and a certified course for health care professionals will be created. Findings: Based on qualitative data analysis, we will propose the concept of integrated care model combining neurological, rehabilitative and specialist palliative care for patients with selected neurological diseases in different settings of care and services. Patients´ needs related to quality of life will be described by newly created and validated measuring tools before the start of intervention (application of neuro-palliative and palliative approach) and then in the time interval. Conclusion: Based on the results, educational materials and a certified course for doctors and health care professionals will be created.

Keywords: Multidisciplinary approach, neuropalliative care, research, quality of life.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
2435 Ensemble Learning with Decision Tree for Remote Sensing Classification

Authors: Mahesh Pal

Abstract:

In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in the field of land cover classification is focused on improving classification accuracy. This study compares the performance of four ensemble approaches (boosting, bagging, DECORATE and random subspace) with a univariate decision tree as base classifier. Two training datasets, one without ant noise and other with 20 percent noise was used to judge the performance of different ensemble approaches. Results with noise free data set suggest an improvement of about 4% in classification accuracy with all ensemble approaches in comparison to the results provided by univariate decision tree classifier. Highest classification accuracy of 87.43% was achieved by boosted decision tree. A comparison of results with noisy data set suggests that bagging, DECORATE and random subspace approaches works well with this data whereas the performance of boosted decision tree degrades and a classification accuracy of 79.7% is achieved which is even lower than that is achieved (i.e. 80.02%) by using unboosted decision tree classifier.

Keywords: Ensemble learning, decision tree, remote sensingclassification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
2434 Funding Innovative Activities in Firms: The Ownership Structure and Governance Linkage - Evidence from Mongolia

Authors: Ernest Nweke, Enkhtuya Bavuudorj

Abstract:

The harsh realities of the scandalous failure of several notable corporations in the past two decades have inextricably resulted in a surge in corporate governance studies. Nevertheless, little or no attention has been paid to corporate governance studies in Mongolian firms and much less to the comprehension of the correlation among ownership structure, corporate governance mechanisms and trend of innovative activities. Innovation is the bed rock of enterprise success. However, the funding and support for innovative activities in many firms are to a great extent determined by the incentives provided by the firm’s internal and external governance mechanisms. Mongolia is an East Asian country currently undergoing a fast-paced transition from socialist to democratic system and it is a widely held view that private ownership as against public ownership fosters innovation. Hence, following the privatization policy of Mongolian Government which has led to the transfer of the ownership of hitherto state controlled and state directed firms to private individuals and organizations, expectations are high that sufficient motivation would be provided for firm managers to engage in innovative activities. This research focuses on the relationship between ownership structure, corporate governance on one hand and the level of innovation on the hand. The paper is empirical in nature and derives data from both reliable secondary and primary sources. Secondary data for the study was in respect of ownership structure of Mongolian listed firms and innovation trend in Mongolia generally. These were analyzed using tables, charts, bars and percentages. Personal interviews and surveys were held to collect primary data. Primary data was in respect of corporate governance practices in Mongolian firms and were collected using structured questionnaire. Out of a population of three hundred and twenty (320) companies listed on the Mongolian Stock Exchange (MSE), a sample size of thirty (30) randomly selected companies was utilized for the study. Five (5) management level employees were surveyed in each selected firm giving a total of one hundred and fifty (150) respondents. Data collected were analyzed and research hypotheses tested using Chi-Square test statistic. Research results showed that corporate governance mechanisms were better and have significantly improved overtime in privately held as opposed to publicly owned firms. Consequently, the levels of innovation in privately held firms were considerably higher. It was concluded that a significant and positive relationship exists between private ownership and good corporate governance on one hand and the level of funding provided for innovative activities in Mongolian firms on the other hand.

Keywords: Corporate governance, innovation, ownership structure, stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
2433 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature

Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak

Abstract:

In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.

Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
2432 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
2431 Body Composition Analysis of University Students by Anthropometry and Bioelectrical Impedance Analysis

Authors: Vinti Davar

Abstract:

Background: Worldwide, at least 2.8 million people die each year as a result of being overweight or obese, and 35.8 million (2.3%) of global DALYs are caused by overweight or obesity. Obesity is acknowledged as one of the burning public health problems reducing life expectancy and quality of life. The body composition analysis of the university population is essential in assessing the nutritional status, as well as the risk of developing diseases associated with abnormal body fat content so as to make nutritional recommendations. Objectives: The main aim was to determine the prevalence of obesity and overweight in University students using Anthropometric analysis and BIA methods. Material and Methods: In this cross-sectional study, 283 university students participated. The body composition analysis was undertaken by using mainly: i) Anthropometric Measurement: Height, Weight, BMI, waist circumference, hip circumference and skin fold thickness, ii) Bio-electrical impedance was used for analysis of body fat mass, fat percent and visceral fat which was measured by Tanita SC-330P Professional Body Composition Analyzer. The data so collected were compiled in MS Excel and analyzed for males and females using SPSS 16. Results and Discussion: The mean age of the male (n= 153) studied subjects was 25.37 ±2.39 years and females (n=130) was 22.53 ±2.31. The data of BIA revealed very high mean fat per cent of the female subjects i.e. 30.3±6.5 per cent whereas mean fat per cent of the male subjects was 15.60±6.02 per cent indicating a normal body fat range. The findings showed high visceral fat of both males (12.92±3.02) and females (16.86±4.98). BMI, BF% and WHR were higher among females, and BMI was higher among males. The most evident correlation was verified between BF% and WHR for female students (r=0.902; p<0.001). The correlation of BFM and BF% with thickness of triceps, sub scapular and abdominal skin folds and BMI was significant (P<0.001). Conclusion: The studied data made it obvious that there is a need to initiate lifestyle changing strategies especially for adult females and encourage them to improve their dietary intake to prevent incidence of noncommunicable diseases due to obesity and high fat percentage.

Keywords: Anthropometry, bioelectrical impedance, body fat percentage, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834
2430 Classification of Attaks over Cloud Environment

Authors: Karim Abouelmehdi, Loubna Dali, Elmoutaoukkil Abdelmajid, Hoda Elsayed Eladnani Fatiha, Benihssane Abderahim

Abstract:

The security of cloud services is the concern of cloud service providers. In this paper, we will mention different classifications of cloud attacks referred by specialized organizations. Each agency has its classification of well-defined properties. The purpose is to present a high-level classification of current research in cloud computing security. This classification is organized around attack strategies and corresponding defenses.

Keywords: Cloud computing, security, classification, risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
2429 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives

Authors: Andreas Theissler, Ian Dear

Abstract:

In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.

Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
2428 Universal Current-Mode OTA-C KHN Biquad

Authors: Dalibor Biolek, Viera Biolková, Zden─øk Kolka

Abstract:

A universal current-mode biquad is described which represents an economical variant of well-known KHN (Kerwin, Huelsman, Newcomb) voltage-mode filter. The circuit consists of two multiple-output OTAs and of two grounded capacitors. Utilizing simple splitter of the input current and a pair of jumpers, all the basic 2nd-order transfer functions can be implemented. The principle is verified by Spice simulation on the level of a CMOS structure of OTAs.

Keywords: Biquad, current mode, OTA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
2427 Comparison among Various Question Generations for Decision Tree Based State Tying in Persian Language

Authors: Nasibeh Nasiri, Dawood Talebi Khanmiri

Abstract:

Performance of any continuous speech recognition system is highly dependent on performance of the acoustic models. Generally, development of the robust spoken language technology relies on the availability of large amounts of data. Common way to cope with little data for training each state of Markov models is treebased state tying. This tying method applies contextual questions to tie states. Manual procedure for question generation suffers from human errors and is time consuming. Various automatically generated questions are used to construct decision tree. There are three approaches to generate questions to construct HMMs based on decision tree. One approach is based on misrecognized phonemes, another approach basically uses feature table and the other is based on state distributions corresponding to context-independent subword units. In this paper, all these methods of automatic question generation are applied to the decision tree on FARSDAT corpus in Persian language and their results are compared with those of manually generated questions. The results show that automatically generated questions yield much better results and can replace manually generated questions in Persian language.

Keywords: Decision Tree, Markov Models, Speech Recognition, State Tying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722