Search results for: Fuzzy mathematical programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2368

Search results for: Fuzzy mathematical programming

418 Piezoelectric Approach on Harvesting Acoustic Energy

Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap

Abstract:

An Acoustic Micro-Energy Harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using Lumped Element Modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Then, AMEH undergoes bandwidth tuning for performance optimization. The AMEH successfully produces 0.9V/(m/s^2) and 1.79μW/(m^2/s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.

Keywords: Piezoelectric, acoustic, energy harvester, thermoacoustic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274
417 Development of Thermal Model by Performance Verification of Heat Pipe Subsystem for Electronic Cooling under Space Environment

Authors: MK Lee, JS Hong, SM Sin, HU Oh

Abstract:

Heat pipes are used to control the thermal problem for electronic cooling. It is especially difficult to dissipate heat to a heat sink in an environment in space compared to earth. For solving this problem, in this study, the Poiseuille (Po) number, which is the main measure of the performance of a heat pipe, is studied by CFD; then, the heat pipe performance is verified with experimental results. A heat pipe is then fabricated for a spatial environment, and an in-house code is developed. Further, a heat pipe subsystem, which consists of a heat pipe, MLI (Multi Layer Insulator), SSM (Second Surface Mirror), and radiator, is tested and correlated with the TMM (Thermal Mathematical Model) through a commercial code. The correlation results satisfy the 3K requirement, and the generated thermal model is verified for application to a spatial environment.

Keywords: CFD, Heat pipe, Radiator, Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
416 An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood

Authors: B. Selma, S. Chouraqui

Abstract:

The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system.

Keywords: Modeling, algorithm, regulation, glucose-insulin, blood, control system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
415 Objective Evaluation of Mathematical Morphology Edge Detection on Computed Tomography (CT) Images

Authors: Emhimed Saffor, Abdelkader Salama

Abstract:

In this paper problem of edge detection in digital images is considered. Edge detection based on morphological operators was applied on two sets (brain & chest) ct images. Three methods of edge detection by applying line morphological filters with multi structures in different directions have been used. 3x3 filter for first method, 5x5 filter for second method, and 7x7 filter for third method. We had applied this algorithm on (13 images) under MATLAB program environment. In order to evaluate the performance of the above mentioned edge detection algorithms, standard deviation (SD) and peak signal to noise ratio (PSNR) were used for justification for all different ct images. The objective method and the comparison of different methods of edge detection,  shows that high values of both standard deviation and PSNR values of edge detection images were obtained. 

Keywords: Medical images, Matlab, Edge detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
414 Real Time Monitoring of Long Slender Shaft by Distributed-Lumped Modeling Techniques

Authors: Sina Babadi, K. M. Ebrahimi

Abstract:

The aim of this paper is to determine the stress levels at the end of a long slender shaft such as a drilling assembly used in the oil or gas industry using a mathematical model in real-time. The torsional deflection experienced by this type of drilling shaft (about 4 KM length and 20 cm diameter hollow shaft with a thickness of 1 cm) can only be determined using a distributed modeling technique. The main objective of this project is to calculate angular velocity and torque at the end of the shaft by TLM method and also analyzing of the behavior of the system by transient response. The obtained result is compared with lumped modeling technique the importance of these results will be evident only after the mentioned comparison. Two systems have different transient responses and in this project because of the length of the shaft transient response is very important.

Keywords: Distributed Lumped modeling, Lumped modeling, Drill string, Angular Velocity, Torque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
413 An Intelligent Approach of Rough Set in Knowledge Discovery Databases

Authors: Hrudaya Ku. Tripathy, B. K. Tripathy, Pradip K. Das

Abstract:

Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.

Keywords: Data mining, Data tables, Knowledge discovery in database (KDD), Rough sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
412 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters

Authors: S.A. Alqallaf, S.A. Al-Mawsawi, A. Haider

Abstract:

In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.

Keywords: UPFC, Decoupled model, Load flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
411 Flexible Arm Manipulator Control for Industrial Tasks

Authors: Mircea Ivanescu, Nirvana Popescu, Decebal Popescu, Dorin Popescu

Abstract:

This paper addresses the control problem of a class of hyper-redundant arms. In order to avoid discrepancy between the mathematical model and the actual dynamics, the dynamic model with uncertain parameters of this class of manipulators is inferred. A procedure to design a feedback controller which stabilizes the uncertain system has been proposed. A PD boundary control algorithm is used in order to control the desired position of the manipulator. This controller is easy to implement from the point of view of measuring techniques and actuation. Numerical simulations verify the effectiveness of the presented methods. In order to verify the suitability of the control algorithm, a platform with a 3D flexible manipulator has been employed for testing. Experimental tests on this platform illustrate the applications of the techniques developed in the paper.

Keywords: Distributed model, flexible manipulator, observer, robot control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
410 The Effect of Transformer’s Vector Group on Retained Voltage Magnitude and Sag Frequency at Industrial Sites Due to Faults

Authors: M. N. Moschakis, V. V. Dafopoulos, I. G. Andritsos, E. S. Karapidakis, J. M. Prousalidis

Abstract:

This paper deals with the effect of a power transformer’s vector group on the basic voltage sag characteristics during unbalanced faults at a meshed or radial power network. Specifically, the propagation of voltage sags through a power transformer is studied with advanced short-circuit analysis. A smart method to incorporate this effect on analytical mathematical expressions is proposed. Based on this methodology, the positive effect of transformers of certain vector groups on the mitigation of the expected number of voltage sags per year (sag frequency) at the terminals of critical industrial customers can be estimated.

Keywords: Balanced and unbalanced faults, industrial design, phase shift, power quality, power systems, voltage sags (or dips).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10221
409 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.

Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
408 Controller Design for Active Suspension System of ¼ Car with Unknown Mass and Time-Delay

Authors: Ali Al-Zughaibi, Huw Davies

Abstract:

The purpose of this paper is to present a modeling and control of a quarter-car active suspension system with unknown mass, unknown time-delay and road disturbance. The objective of designing the controller is to derive a control law to achieve stability of the system and convergence that can considerably improve ride comfort and road disturbance handling. This is accomplished by using Routh-Hurwitz criterion based on defined parameters. Mathematical proof is given to show the ability of the designed controller to ensure the target of design, implementation with the active suspension system and enhancement dispersion oscillation of the system despite these problems. Simulations were also performed to control quarter car suspension, where the results obtained from these simulations verify the validity of the proposed design.

Keywords: Active suspension system, disturbance rejection, dynamic uncertainty, time-delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5230
407 Effect of Cladding and Secondary Members on the Elastic Stability of Main Columns

Authors: Mohamed Massoud El Sadaawy, Ehab Hasan Ahmed Hasan Ali

Abstract:

The corrugated steel cladding used to cover most of steel buildings is considered as non-structural element. This research will reflect the effect of cladding as a shear diaphragm in increasing the normal elastic capacity of columns. This study is important because of the lack of information of the behavior of cladding and secondary members in various codes. Mathematical models for six different cases are carried by software. The results extracted from the program have been plotted showing the effects of different variables on the ultimate load of column. The variables considered in our research are the spacing between columns and the thickness of the corrugated sheet representing the sheet stiffness.

Keywords: Stability of frames about minor axis, The effective length factor, Effect of secondary members on elastic buckling load column, The stiffness of sheeting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2799
406 Origami Theory and Its Applications: A Literature Review

Authors: L. J. Fei, D. Sujan

Abstract:

This paper presents the fundamentals of Origami engineering and its application in nowadays as well as future industry. Several main cores of mathematical approaches such as Huzita- Hatori axioms, Maekawa and Kawasaki-s theorems are introduced briefly. Meanwhile flaps and circle packing by Robert Lang is explained to make understood the underlying principles in designing crease pattern. Rigid origami and its corrugation patterns which are potentially applicable for creating transformable or temporary spaces is discussed to show the transition of origami from paper to thick material. Moreover, some innovative applications of origami such as eyeglass, origami stent and high tech origami based on mentioned theories and principles are showcased in section III; while some updated origami technology such as Vacuumatics, self-folding of polymer sheets and programmable matter folding which could greatlyenhance origami structureare demonstrated in Section IV to offer more insight in future origami.

Keywords: Origami, origami application, origami engineering, origami technology, rigid origami.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6812
405 A Study on Reducing Malicious Replies on the Internet: An Approach by Game Theory

Authors: Sanghun Lee

Abstract:

Since the advent of the information era, the Internet has brought various positive effects in everyday life. Nevertheless, recently, problems and side-effects have been noted. Internet witch-trials and spread of pornography are only a few of these problems.In this study, problems and causes of malicious replies on internet boards were analyzed, using the key ideas of game theory. The study provides a mathematical model for the internet reply game to devise three possible plans that could efficiently counteract malicious replies. Furthermore, seven specific measures that comply with one of the three plans were proposed and evaluated according to the importance and utility of each measure using the orthogonal array survey and SPSS conjoint analysis.The conclusion was that the most effective measure would be forbidding unsigned user access to malicious replies. Also notable was that some analytically proposed measures, when implemented, could backfire and encourage malicious replies.

Keywords: Conjoint Analysis, Game Theory, Internet, MaliciousReplies, Prisoner's Dilemma

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
404 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-Car Model

Authors: Quy Dang Nguyen, Reza Nakhaie Jazar

Abstract:

The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.

Keywords: Quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206
403 Effect of Different Configurations of Mechanical Aerators on Oxygen Transfer and Aeration Efficiency with respect to Power Consumption

Authors: S.B. Thakre, L.B. Bhuyar, S.J. Deshmukh

Abstract:

This paper examines the use of mechanical aerator for oxidation-ditch process. The rotor, which controls the aeration, is the main component of the aeration process. Therefore, the objective of this study is to find out the variations in overall oxygen transfer coefficient (KLa) and aeration efficiency (AE) for different configurations of aerator by varying the parameters viz. speed of aerator, depth of immersion, blade tip angles so as to yield higher values of KLa and AE. Six different configurations of aerator were developed and fabricated in the laboratory and were tested for abovementioned parameters. The curved blade rotor (CBR) emerged as a potential aerator with blade tip angle of 47°. The mathematical models are developed for predicting the behaviour of CBR w.r.t kLa and power. In laboratory studies, the optimum value of KLa and AE were observed to be 10.33 h-1 and 2.269 kg O2/ kWh.

Keywords: Aerator, Aeration efficiency, Dissolve Oxygen, Overall oxygen transfer coefficient, Oxidation ditch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3892
402 Influence of Channel Depth on the Performance of Wavy Fin Absorber Solar Air Heater

Authors: Abhishek Priyam, Prabha Chand

Abstract:

Channel depth is an important design parameter to be fixed in designing a solar air heater. In this paper, a mathematical model has been developed to study the influence of channel duct on the thermal performance of solar air heaters. The channel depth has been varied from 1.5 cm to 3.5 cm for the mass flow range 0.01 to 0.11 kg/s. Based on first law of thermodynamics, the channel depth of 1.5 cm shows better thermal performance for all the mass flow range. Also, better thermohydraulic performance has been found up to 0.05 kg/s, and beyond this, thermohydraulic efficiency starts decreasing. It has been seen that, with the increase in the mass flow rate, the difference between thermal and thermohydraulic efficiency increases because of the increase in pressure drop. At lower mass flow rate, 0.01 kg/s, the thermal and thermohydraulic efficiencies for respective channel depth remain the same.

Keywords: Channel depth, thermal efficiency, wavy fin, thermohydraulic efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1065
401 Tuberculosis Modelling Using Bio-PEPA Approach

Authors: Dalila Hamami, Baghdad Atmani

Abstract:

Modelling is a widely used tool to facilitate the evaluation of disease management. The interest of epidemiological models lies in their ability to explore hypothetical scenarios and provide decision makers with evidence to anticipate the consequences of disease incursion and impact of intervention strategies.

All models are, by nature, simplification of more complex systems. Models that involve diseases can be classified into different categories depending on how they treat the variability, time, space, and structure of the population. Approaches may be different from simple deterministic mathematical models, to complex stochastic simulations spatially explicit.

Thus, epidemiological modelling is now a necessity for epidemiological investigations, surveillance, testing hypotheses and generating follow-up activities necessary to perform complete and appropriate analysis.

The state of the art presented in the following, allows us to position itself to the most appropriate approaches in the epidemiological study.

Keywords: Bio-PEPA, Cellular automata, Epidemiological modelling, multi agent system, ordinary differential equations, PEPA, Process Algebra, Tuberculosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
400 Modeling Exponential Growth Activity Using Technology: A Research with Bachelor of Business Administration Students

Authors: V. Vargas-Alejo, L. E. Montero-Moguel

Abstract:

Understanding the concept of function has been important in mathematics education for many years. In this study, the models built by a group of five business administration and accounting undergraduate students when carrying out a population growth activity are analyzed. The theoretical framework is the Models and Modeling Perspective. The results show how the students included tables, graphics, and algebraic representations in their models. Using technology was useful to interpret, describe, and predict the situation. The first model, the students built to describe the situation, was linear. After that, they modified and refined their ways of thinking; finally, they created exponential growth. Modeling the activity was useful to deep on mathematical concepts such as covariation, rate of change, and exponential function also to differentiate between linear and exponential growth.

Keywords: Covariation reasoning, exponential function, modeling, representations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 503
399 Study on the Mechanical Behavior of the Varactor of a Micro-Phase Shifter

Authors: Mehrdad Nouri Khajavi, Sajjad Ahoui Ghazvin, Ghader Rezazadeh, Mohammad Fathalilou

Abstract:

In this paper static and dynamic response of a varactor of a micro-phase shifter to DC, step DC and AC voltages have been studied. By presenting a mathematical modeling Galerkin-based step by step linearization method (SSLM) and Galerkin-based reduced order model have been used to solve the governing static and dynamic equations, respectively. The calculated static and dynamic pull-in voltages have been validated by previous experimental and theoretical results and a good agreement has been achieved. Then the frequency response and phase diagram of the system has been studied. It has been shown that applying the DC voltage shifts down the phase diagram and frequency response. Also increasing the damping ratio shifts up the phase diagram.

Keywords: MEMS, Phase Shifter, Pull-in Voltage, PhaseDiagram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
398 Modeling and Simulations of Complex Low- Dimensional systems: Testing the Efficiency of Parallelization

Authors: Ryszard Matysiak, Grzegorz Kamieniarz

Abstract:

The deterministic quantum transfer-matrix (QTM) technique and its mathematical background are presented. This important tool in computational physics can be applied to a class of the real physical low-dimensional magnetic systems described by the Heisenberg hamiltonian which includes the macroscopic molecularbased spin chains, small size magnetic clusters embedded in some supramolecules and other interesting compounds. Using QTM, the spin degrees of freedom are accurately taken into account, yielding the thermodynamical functions at finite temperatures. In order to test the application for the susceptibility calculations to run in the parallel environment, the speed-up and efficiency of parallelization are analyzed on our platform SGI Origin 3800 with p = 128 processor units. Using Message Parallel Interface (MPI) system libraries we find the efficiency of the code of 94% for p = 128 that makes our application highly scalable.

Keywords: Deterministic simulations, low-dimensional magnets, modeling of complex systems, parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
397 Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity

Authors: N. P. Yadav, Deepti Verma

Abstract:

This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mold cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process is analyzed by including the effect of pouring velocity as well as natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.

Keywords: Buoyancy driven flow, natural convection driven flow, residual flow, secondary flow, volume of fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
396 Prediction of Overall Efficiency in Multistage Gear Trains

Authors: James Kuria, John Kihiu

Abstract:

A mathematical model for determining the overall efficiency of a multistage tractor gearbox including all gear, lubricant, surface finish related parameters and operating conditions is presented. Sliding friction, rolling friction and windage losses were considered as the main sources of power loss in the gearing system. A computer code in FORTRAN was developed to simulate the model. Sliding friction contributes about 98% of the total power loss for gear trains operating at relatively low speeds (less than 2000 rpm input speed). Rolling frictional losses decrease with increased load while windage losses are only significant for gears running at very high speeds (greater than 3000 rpm). The results also showed that the overall efficiency varies over the path of contact of the gear meshes ranging between 94% to 99.5%.

Keywords: Efficiency, multistage gear train, rolling friction, slidingfriction, windage losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3671
395 A Numerical Model Simulation for an Updraft Gasifier Using High Temperature Steam

Authors: T. M. Ismail, M. Abd El-Salam

Abstract:

A mathematical model study was carried out to investigate gasification of biomass fuels using high temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promise way in its capability and sensitivity for the parameter affects that influence the gasification process.

Keywords: Computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2827
394 Viscoelastic Characterization of Bovine Trabecular Bone Samples

Authors: Ramirez D. Edgar I., Angeles H. José J., Ruiz C. Osvaldo, Jacobo A. Victor H., Ortiz P. Armando

Abstract:

Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.

Keywords: Bone viscoelasticity, fatigue test, stress relaxation test, trabecular bone properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
393 Application of the Experimental Planning Design to the Notched Precracked Tensile Fracture of Composite

Authors: N. Mahmoudi

Abstract:

Composite materials have important assets compared to traditional materials. They bring many functional advantages: lightness, mechanical resistance and chemical, etc. In the present study we examine the effect of a circular central notch and a precrack on the tensile fracture of two woven composite materials. The tensile tests were applied to a standardized specimen, notched and a precarcked (orientation of the crack 0°, 45° and 90°). These tensile tests were elaborated according to an experimental planning design of the type 23.31 requiring 24 experiments with three repetitions. By the analysis of regression, we obtained a mathematical model describing the maximum load according to the influential parameters (hole diameter, precrack length, angle of a precrack orientation). The specimens precracked at 90° have a better behavior than those having a precrack at 45° and still better than those having of the precracks oriented at 0°. In addition the maximum load is inversely proportional to the notch size.

Keywords: Polymer matrix, Glasses, Fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
392 Simulation of a Double-Sided Axial Flux Brushless Dc Two-Phase Motor Dynamics

Authors: Abdolamir Nekoubin

Abstract:

The objective of this paper is to analyze the performance of a double-sided axial flux permanent magnet brushless DC (AFPM BLDC) motor with two-phase winding. To study the motor operation, a mathematical dynamic model has been proposed for motor, which became the basis for simulations that were performed using MATLAB/SIMULINK software package. The results of simulations were presented in form of the waveforms of selected quantities and the electromechanical characteristics performed by the motor. The calculation results show that the two-phase motor version develops smooth torque and reaches high efficiency. The twophase motor can be applied where more smooth torque is required. Finally a study on the influence of switching angle on motor performance shows that when advance switching technique is used, the motor operates with the highest efficiency.

Keywords: brushless DC motor, inverter, switching angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968
391 System Identification and Control the Azimuth Angle of the Platform of MLRS by PID Controller

Authors: Parkpoom Ch., Narongkorn D.

Abstract:

This paper presents the system identification by physical-s law method and designs the controller for the Azimuth Angle Control of the Platform of the Multi-Launcher Rocket System (MLRS) by Root Locus technique. The plant mathematical model was approximated using MATLAB for simulation and analyze the system. The controller proposes the implementation of PID Controller using Programmable Logic Control (PLC) for control the plant. PID Controllers are widely applicable in industrial sectors and can be set up easily and operate optimally for enhanced productivity, improved quality and reduce maintenance requirement. The results from simulation and experiments show that the proposed a PID Controller to control the elevation angle that has superior control performance by the setting time less than 12 sec, the rise time less than 1.6 sec., and zero steady state. Furthermore, the system has a high over shoot that will be continue development.

Keywords: Azimuth angle control, PID Controller, The platform of Multi-Launcher Rocket System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
390 Methodology of the Energy Supply Disturbances Affecting Energy System

Authors: J. Augutis, R. Krikstolaitis, L. Martisauskas

Abstract:

Recently global concerns for the energy security have steadily been on the increase and are expected to become a major issue over the next few decades. Energy security refers to a resilient energy system. This resilient system would be capable of withstanding threats through a combination of active, direct security measures and passive or more indirect measures such as redundancy, duplication of critical equipment, diversity in fuel, other sources of energy, and reliance on less vulnerable infrastructure. Threats and disruptions (disturbances) to one part of the energy system affect another. The paper presents methodology in theoretical background about energy system as an interconnected network and energy supply disturbances impact to the network. The proposed methodology uses a network flow approach to develop mathematical model of the energy system network as the system of nodes and arcs with energy flowing from node to node along paths in the network.

Keywords: Energy Security, Energy Supply Disturbances, Modeling of Energy System, Network Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
389 Study of Adsorption Isotherm Models on Rare Earth Elements Biosorption for Separation Purposes

Authors: Nice Vasconcelos Coimbra, Fábio dos Santos Gonçalves, Marisa Nascimento, Ellen Cristine Giese

Abstract:

The development of chemical routes for the recovery and separation of rare earth elements (REE) is seen as a priority and strategic action by several countries demanding these elements. Among the possibilities of alternative routes, the biosorption process has been evaluated in our laboratory. In this theme, the present work attempts to assess and fit the solution equilibrium data in Langmuir, Freundlich and DKR isothermal models, based on the biosorption results of the lanthanum and samarium elements by Bacillus subtilis immobilized on calcium alginate gel. It was observed that the preference of adsorption of REE by the immobilized biomass followed the order Sm (III)> La (III). It can be concluded that among the studied isotherms models, the Langmuir model presented better mathematical results than the Freundlich and DKR models.

Keywords: Rare earth elements, biosorption, Bacillus subtilis, adsorption isotherm models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 741