Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2007

Search results for: Lumped modeling

2007 Real Time Monitoring of Long Slender Shaft by Distributed-Lumped Modeling Techniques

Authors: Sina Babadi, K. M. Ebrahimi

Abstract:

The aim of this paper is to determine the stress levels at the end of a long slender shaft such as a drilling assembly used in the oil or gas industry using a mathematical model in real-time. The torsional deflection experienced by this type of drilling shaft (about 4 KM length and 20 cm diameter hollow shaft with a thickness of 1 cm) can only be determined using a distributed modeling technique. The main objective of this project is to calculate angular velocity and torque at the end of the shaft by TLM method and also analyzing of the behavior of the system by transient response. The obtained result is compared with lumped modeling technique the importance of these results will be evident only after the mentioned comparison. Two systems have different transient responses and in this project because of the length of the shaft transient response is very important.

Keywords: Distributed Lumped modeling, Lumped modeling, Drill string, Angular Velocity, Torque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
2006 Mathematical Modeling of Human Cardiovascular System: A Lumped Parameter Approach and Simulation

Authors: Ketan Naik, P. H. Bhathawala

Abstract:

The purpose of this work is to develop a mathematical model of Human Cardiovascular System using lumped parameter method. The model is divided in three parts: Systemic Circulation, Pulmonary Circulation and the Heart. The established mathematical model has been simulated by MATLAB software. The innovation of this study is in describing the system based on the vessel diameters and simulating mathematical equations with active electrical elements. Terminology of human physical body and required physical data like vessel’s radius, thickness etc., which are required to calculate circuit parameters like resistance, inductance and capacitance, are proceeds from well-known medical books. The developed model is useful to understand the anatomic of human cardiovascular system and related syndromes. The model is deal with vessel’s pressure and blood flow at certain time.

Keywords: Cardiovascular system, lumped parameter method, mathematical modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2769
2005 A Consideration on the Offset Frontal Impact Modeling Using Spring-Mass Model

Authors: Jaemoon Lim

Abstract:

To construct the lumped spring-mass model considering the occupants for the offset frontal crash, the SISAME software and the NHTSA test data were used. The data on 56 kph 40% offset frontal vehicle to deformable barrier crash test of a MY2007 Mazda 6 4-door sedan were obtained from NHTSA test database. The overall behaviors of B-pillar and engine of simulation models agreed very well with the test data. The trends of accelerations at the driver and passenger head were similar but big differences in peak values. The differences of peak values caused the large errors of the HIC36 and 3 ms chest g’s. To predict well the behaviors of dummies, the spring-mass model for the offset frontal crash needs to be improved.

Keywords: Chest g’s, HIC36, lumped spring-mass model, offset frontal impact, SISAME.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385
2004 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: Acoustic sensor, diaphragm based, lumped element modeling, natural frequency, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692
2003 Lumped Parameter Models for Numerical Simulation of the Dynamic Response of Hoisting Appliances

Authors: Giovanni Incerti, Luigi Solazzi, Candida Petrogalli

Abstract:

This paper describes three lumped parameters models for the study of the dynamic behavior of a boom crane. The models here proposed allows to evaluate the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.

Keywords: Crane, dynamic model, overloading condition, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
2002 Design and Analysis of MEMS based Accelerometer for Automatic Detection of Railway Wheel Flat

Authors: Rajib Ul Alam Uzzal, Ion Stiharu, Waiz Ahmed

Abstract:

This paper presents the modeling of a MEMS based accelerometer in order to detect the presence of a wheel flat in the railway vehicle. A haversine wheel flat is assigned to one wheel of a 5 DOF pitch plane vehicle model, which is coupled to a 3 layer track model. Based on the simulated acceleration response obtained from the vehicle-track model, an accelerometer is designed that meets all the requirements to detect the presence of a wheel flat. The proposed accelerometer can survive in a dynamic shocking environment with acceleration up to ±150g. The parameters of the accelerometer are calculated in order to achieve the required specifications using lumped element approximation and the results are used for initial design layout. A finite element analysis code (COMSOL) is used to perform simulations of the accelerometer under various operating conditions and to determine the optimum configuration. The simulated results are found within about 2% of the calculated values, which indicates the validity of lumped element approach. The stability of the accelerometer is also determined in the desired range of operation including the condition under shock.

Keywords: MEMS accelerometer, Pitch plane vehicle, wheel flat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2827
2001 Paremaeter Determination of a Vehicle 5-DOF Model to Simulate Occupant Deceleration in a Frontal Crash

Authors: Javad Marzbanrad, Mostafa Pahlavani

Abstract:

This study has investigated a vehicle Lumped Parameter Model (LPM) in frontal crash. There are several ways for determining spring and damper characteristics and type of problem shall be considered as system identification. This study use Genetic Algorithm (GA) procedure, being an effective procedure in case of optimization issues, for optimizing errors, between target data (experimental data) and calculated results (being obtained by analytical solving). In this study analyzed model in 5-DOF then compared our results with 5-DOF serial model. Finally, the response of model due to external excitement is investigated.

Keywords: Vehicle, Lumped-Parameter Model, GeneticAlgorithm, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
2000 Variability of Hydrological Modeling of the Blue Nile

Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm

Abstract:

The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.

Keywords: Blue Nile Basin, Climate Change, Hydrological Modeling, Watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
1999 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model

Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth

Abstract:

This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.

Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
1998 Precision Identification of Nonlinear Damping Parameter for a Miniature Moving-Coil Transducer

Authors: Yu-Ting Tsai, Yu-da Lee, Jin H. Huang

Abstract:

The nonlinear damping behavior is usually ignored in the design of a miniature moving-coil loudspeaker. But when the loudspeaker operated in air, the damping parameter varies with the voice-coil displacement corresponding due to viscous air flow. The present paper presents an identification model as inverse problem to identify the nonlinear damping parameter in the lumped parameter model for the loudspeaker. Theoretical results for the nonlinear damping are verified by using laser displacement measurement scanner. These results indicate that the damping parameter has the greatly different nonlinearity between in air and vacuum. It is believed that the results of the present work can be applied in diagnosis and sound quality improvement of a miniature loudspeaker.

Keywords: Miniature loudspeaker, non-linear damping, system identification, Lumped parameter model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
1997 High Efficiency Class-F Power Amplifier Design

Authors: Abdalla Mohamed Eblabla

Abstract:

Due to the high increase in and demand for a wide assortment of applications that require low-cost, high-efficiency, and compact systems, RF power amplifiers are considered the most critical design blocks and power consuming components in wireless communication, TV transmission, radar, and RF heating. Therefore, much research has been carried out in order to improve the performance of power amplifiers. Classes-A, B, C, D, E and F are the main techniques for realizing power amplifiers.

An implementation of high efficiency class-F power amplifier with Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) was realized in this paper. The simulation and optimization of the class-F power amplifier circuit model was undertaken using Agilent’s Advanced Design system (ADS). The circuit was designed using lumped elements.

Keywords: Power Amplifier (PA), Gallium Nitride (GaN), Agilent’s Advanced Design system (ADS) and lumped elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3949
1996 FEM Analysis of Occluded Ear Simulator with Narrow Slit Pathway

Authors: M. Sasajima, T. Yamaguchi, M. Watanabe, Y. Koike

Abstract:

This paper discusses the propagation of sound waves in air, specifically in narrow rectangular pathways of an occluded-ear simulator for acoustic measurements. In narrow pathways, both the speed of sound and the phase of the sound waves are affected by the damping of the air viscosity. Herein, we propose a new finite-element method (FEM) that considers the effects of the air viscosity. The method was developed as an extension of existing FEMs for porous, sound-absorbing materials. The results of a numerical calculation for a three-dimensional ear-simulator model using the proposed FEM were validated by comparing with theoretical lumped-parameter modeling analysis and standard values.

Keywords: Ear simulator, FEM, simulation, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
1995 The Feedback Control for Distributed Systems

Authors: Kamil Aida-zade, C. Ardil

Abstract:

We study the problem of synthesis of lumped sources control for the objects with distributed parameters on the basis of continuous observation of phase state at given points of object. In the proposed approach the phase state space (phase space) is beforehand somehow partitioned at observable points into given subsets (zones). The synthesizing control actions therewith are taken from the class of piecewise constant functions. The current values of control actions are determined by the subset of phase space that contains the aggregate of current states of object at the observable points (in these states control actions take constant values). In the paper such synthesized control actions are called zone control actions. A technique to obtain optimal values of zone control actions with the use of smooth optimization methods is given. With this aim, the formulas of objective functional gradient in the space of zone control actions are obtained.

Keywords: Feedback control, distributed systems, smooth optimization methods, lumped control synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 327
1994 Accurate Time Domain Method for Simulation of Microstructured Electromagnetic and Photonic Structures

Authors: Vijay Janyani, Trevor M. Benson, Ana Vukovic

Abstract:

A time-domain numerical model within the framework of transmission line modeling (TLM) is developed to simulate electromagnetic pulse propagation inside multiple microcavities forming photonic crystal (PhC) structures. The model developed is quite general and is capable of simulating complex electromagnetic problems accurately. The field quantities can be mapped onto a passive electrical circuit equivalent what ensures that TLM is provably stable and conservative at a local level. Furthermore, the circuit representation allows a high level of hybridization of TLM with other techniques and lumped circuit models of components and devices. A photonic crystal structure formed by rods (or blocks) of high-permittivity dieletric material embedded in a low-dielectric background medium is simulated as an example. The model developed gives vital spatio-temporal information about the signal, and also gives spectral information over a wide frequency range in a single run. The model has wide applications in microwave communication systems, optical waveguides and electromagnetic materials simulations.

Keywords: Computational Electromagnetics, Numerical Simulation, Transmission Line Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
1993 Modelling of a Biomechanical Vertebral System for Seat Ejection in Aircrafts Using Lumped Mass Approach

Authors: R. Unnikrishnan, K. Shankar

Abstract:

In the case of high-speed fighter aircrafts, seat ejection is designed mainly for the safety of the pilot in case of an emergency. Strong windblast due to the high velocity of flight is one main difficulty in clearing the tail of the aircraft. Excessive G-forces generated, immobilizes the pilot from escape. In most of the cases, seats are ejected out of the aircrafts by explosives or by rocket motors attached to the bottom of the seat. Ejection forces are primarily in the vertical direction with the objective of attaining the maximum possible velocity in a specified period of time. The safe ejection parameters are studied to estimate the critical time of ejection for various geometries and velocities of flight. An equivalent analytical 2-dimensional biomechanical model of the human spine has been modelled consisting of vertebrae and intervertebral discs with a lumped mass approach. The 24 vertebrae, which consists of the cervical, thoracic and lumbar regions, in addition to the head mass and the pelvis has been designed as 26 rigid structures and the intervertebral discs are assumed as 25 flexible joint structures. The rigid structures are modelled as mass elements and the flexible joints as spring and damper elements. Here, the motions are restricted only in the mid-sagittal plane to form a 26 degree of freedom system. The equations of motions are derived for translational movement of the spinal column. An ejection force with a linearly increasing acceleration profile is applied as vertical base excitation on to the pelvis. The dynamic vibrational response of each vertebra in time-domain is estimated.

Keywords: Biomechanical model, lumped mass, seat ejection, vibrational response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745
1992 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation

Authors: Y. T. Tsai, Jin H. Huang

Abstract:

The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.

Keywords: Inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
1991 Equivalent Circuit Modelling of Active Reflectarray Antenna

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents equivalent circuit modeling of active planar reflectors which can be used for the detailed analysis and characterization of reflector performance in terms of lumped components. Equivalent circuit representation has been proposed for PIN diodes and liquid crystal based active planar reflectors designed within X-band frequency range. A very close agreement has been demonstrated between equivalent circuit results, 3D EM simulated results as well as measured scattering parameter results. In the case of measured results, a maximum discrepancy of 1.05dB was observed in the reflection loss performance, which can be attributed to the losses occurred during measurement process.

Keywords: Equivalent circuit modelling, planar reflectors, reflectarray antenna, PIN diode, liquid crystal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
1990 A Rapid and Cost-Effective Approach to Manufacturing Modeling Platform for Fused Deposition Modeling

Authors: Chil-Chyuan Kuo, Chen-Hsuan Tsai

Abstract:

This study presents a cost-effective approach for rapid fabricating modeling platforms utilized in fused deposition modeling system. A small-batch production of modeling platforms about 20 pieces can be obtained economically through silicone rubber mold using vacuum casting without applying the plastic injection molding. The air venting systems is crucial for fabricating modeling platform using vacuum casting. Modeling platforms fabricated can be used for building rapid prototyping model after sandblasting. This study offers industrial value because it has both time-effectiveness and cost-effectiveness.

Keywords: Vacuum casting, fused deposition modeling, modeling platform, sandblasting, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
1989 Meandered Microstrip Open Circuited Stub with Bandstop Characteristic

Authors: Goh Chin Hock, Chandan Kumar Chakrabarty, Mohammad Hadi Badjian, Sanjay Devkumar

Abstract:

This paper presents a microstrip meandered open circuited stub with bandstop characteristic. The proposed structure is designed on a high frequency laminate with dielectric constant of 4.0 and board thickness of 0.508 millimeters. The scattering parameters and electromagnetic field distributions at various frequencies are investigated by modeling the structure with three dimensional electromagnetic simulation tool. In order to describe the resonant and bandstop characteristic of the meandered open circuited stub, a Smith chart as well as electric field at various frequencies and phases is illustrated accordingly. The structure can be an alternative method in suppressing the harmonic response of a bandpass filter.

Keywords: Bandstop, Equivalent Lumped Element Model, Electromagnetic Model, Meandered Open Circuited Stub

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
1988 Augmenting Use Case View for Modeling

Authors: Pradip Peter Dey, Bhaskar Raj Sinha, Mohammad Amin, Hassan Badkoobehi

Abstract:

Mathematical, graphical and intuitive models are often constructed in the development process of computational systems. The Unified Modeling Language (UML) is one of the most popular modeling languages used by practicing software engineers. This paper critically examines UML models and suggests an augmented use case view with the addition of new constructs for modeling software. It also shows how a use case diagram can be enhanced. The improved modeling constructs are presented with examples for clarifying important design and implementation issues.

Keywords: Software architecture, software design, Unified Modeling Language (UML), user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
1987 Modeling Method and Application in Digital Mockup System towards Mechanical Product

Authors: Huaiyu Zhang

Abstract:

The method of modeling is the key technology for digital mockup (DMU). Based upon the developing for mechanical product DMU, the theory, method and approach for virtual environment (VE) and virtual object (VO) were studied. This paper has expounded the design goal and architecture of DMU system, analyzed the method of DMU application, and researched the general process of physics modeling and behavior modeling.

Keywords: DMU, VR, virtual environment, virtual object, physics modeling, behavior modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487
1986 Bridging the Gap between Different Interfaces for Business Process Modeling

Authors: Katalina Grigorova, Kaloyan Mironov

Abstract:

The paper focuses on the benefits of business process modeling. Although this discipline is developing for many years, there is still necessity of creating new opportunities to meet the ever increasing users’ needs. Because one of these needs is related to the conversion of business process models from one standard to another, the authors have developed a converter between BPMN and EPC standards using workflow patterns as intermediate tool. Nowadays there are too many systems for business process modeling. The variety of output formats is almost the same as the systems themselves. This diversity additionally hampers the conversion of the models. The presented study is aimed at discussing problems due to differences in the output formats of various modeling environments.

Keywords: Business process modeling, business process modeling standards, workflow patterns, converting models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
1985 SoC Communication Architecture Modeling

Authors: Ziaddin Daie Koozekanani, Mina Zolfy Lighvan

Abstract:

One of the most challengeable issues in ESL (Electronic System Level) design is the lack of a general modeling scheme for on chip communication architecture. In this paper some of the mostly used methodologies for modeling and representation of on chip communication are investigated. Our goal is studying the existing methods to extract the requirements of a general representation scheme for communication architecture synthesis. The next step, will be introducing a modeling and representation method for being used in automatically synthesis process of on chip communication architecture.

Keywords: Communication architecture, System on Chip, Communication Modeling and Representation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
1984 Dimensional Modeling of HIV Data Using Open Source

Authors: Charles D. Otine, Samuel B. Kucel, Lena Trojer

Abstract:

Selecting the data modeling technique for an information system is determined by the objective of the resultant data model. Dimensional modeling is the preferred modeling technique for data destined for data warehouses and data mining, presenting data models that ease analysis and queries which are in contrast with entity relationship modeling. The establishment of data warehouses as components of information system landscapes in many organizations has subsequently led to the development of dimensional modeling. This has been significantly more developed and reported for the commercial database management systems as compared to the open sources thereby making it less affordable for those in resource constrained settings. This paper presents dimensional modeling of HIV patient information using open source modeling tools. It aims to take advantage of the fact that the most affected regions by the HIV virus are also heavily resource constrained (sub-Saharan Africa) whereas having large quantities of HIV data. Two HIV data source systems were studied to identify appropriate dimensions and facts these were then modeled using two open source dimensional modeling tools. Use of open source would reduce the software costs for dimensional modeling and in turn make data warehousing and data mining more feasible even for those in resource constrained settings but with data available.

Keywords: About Database, Data Mining, Data warehouse, Dimensional Modeling, Open Source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
1983 Solver for a Magnetic Equivalent Circuit and Modeling the Inrush Current of a 3-Phase Transformer

Authors: Markus G. Ortner, Christian Magele, Klaus Krischan

Abstract:

Knowledge about the magnetic quantities in a magnetic circuit is always of great interest. On the one hand, this information is needed for the simulation of a transformer. On the other hand, parameter studies are more reliable, if the magnetic quantities are derived from a well established model. One possibility to model the 3-phase transformer is by using a magnetic equivalent circuit (MEC). Though this is a well known system, it is often not an easy task to set up such a model for a large number of lumped elements which additionally includes the nonlinear characteristic of the magnetic material. Here we show the setup of a solver for a MEC and the results of the calculation in comparison to measurements taken. The equations of the MEC are based on a rearranged system of the nodal analysis. Thus it is possible to achieve a minimum number of equations, and a clear and simple structure. Hence, it is uncomplicated in its handling and it supports the iteration process. Additional helpful tasks are implemented within the solver to enhance the performance. The electric circuit is described by an electric equivalent circuit (EEC). Our results for the 3-phase transformer demonstrate the computational efficiency of the solver, and show the benefit of the application of a MEC.

Keywords: Inrush current, magnetic equivalent circuit, nonlinear behavior, transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
1982 Conceptual Method for Flexible Business Process Modeling

Authors: Adla Bentellis, Zizette Boufaïda

Abstract:

Nowadays, the pace of business change is such that, increasingly, new functionality has to be realized and reliably installed in a matter of days, or even hours. Consequently, more and more business processes are prone to a continuous change. The objective of the research in progress is to use the MAP model, in a conceptual modeling method for flexible and adaptive business process. This method can be used to capture the flexibility dimensions of a business process; it takes inspiration from modularity concept in the object oriented paradigm to establish a hierarchical construction of the BP modeling. Its intent is to provide a flexible modeling that allows companies to quickly adapt their business processes.

Keywords: Business Process, Business process modeling, flexibility, MAP Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
1981 CFD Simulation of Condensing Vapor Bubble using VOF Model

Authors: Seong-Su Jeon, Seong-Jin Kim, Goon-Cherl Park

Abstract:

In this study, direct numerical simulation for the bubble condensation in the subcooled boiling flow was performed. The main goal was to develop the CFD modeling for the bubble condensation and to evaluate the accuracy of the VOF model with the developed CFD modeling. CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using UDF. In the modeling, the amount of condensation was determined using the interfacial heat transfer coefficient obtained from the bubble velocity, liquid temperature and bubble diameter every time step. To evaluate the VOF model using the CFD modeling for the bubble condensation, CFD simulation results were compared with SNU experimental results such as bubble volume and shape, interfacial area, bubble diameter and bubble velocity. Simulation results predicted well the behavior of the actual condensing bubble. Therefore, it can be concluded that the VOF model using the CFD modeling for the bubble condensation will be a useful computational fluid dynamics tool for analyzing the behavior of the condensing bubble in a wide range of the subcooled boiling flow.

Keywords: Bubble condensation, CFD modeling, Subcooled boiling flow, VOF model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6302
1980 A Collaborative Framework for Visual Modeling on Web 2.0

Authors: Song Meng, Dianfu Ma, Yongwang Zhao, Jianxin Li

Abstract:

Cooperative visual modeling is more and more necessary in our complicated world. A collaborative environment which supports interactive operation and communication is required to increase work efficiency. We present a collaborative visual modeling framework which collaborative platform could be built on. On this platform, cooperation and communication is available for designers from different regions. This framework, which is different from other collaborative frameworks, contains a uniform message format, a message handling mechanism and other functions such as message pretreatment and Role-Communication-Token Access Control (RCTAC). We also show our implementation of this framework called Orchestra Designer, which support BPLE workflow modeling cooperatively online.

Keywords: colllaborative framework; visual modeling; message handling mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
1979 Multi-Level Meta-Modeling for Enabling Dynamic Subtyping for Industrial Automation

Authors: Zoltan Theisz, Gergely Mezei

Abstract:

Modern industrial automation relies on service oriented concepts of Internet of Things (IoT) device modeling in order to provide a flexible and extendable environment for service meta-repository. However, state-of-the-art meta-modeling techniques prefer design-time modeling, which results in a heavy usage of class sometimes unnecessary static subtyping. Although this approach benefits from clear-cut object-oriented design principles, it also seals the model repository for further dynamic extensions. In this paper, a dynamic multi-level modeling approach is introduced that enables dynamic subtyping through a more relaxed partial instantiation mechanism. The approach is demonstrated on a simple sensor network example.

Keywords: Meta-modeling, dynamic subtyping, DMLA, industrial automation, arrowhead.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867
1978 Modeling of Kepler-Poinsot Solid Using Isomorphic Polyhedral Graph

Authors: Hidetoshi Nonaka

Abstract:

This paper presents an interactive modeling system of uniform polyhedra using the isomorphic graphs. Especially, Kepler-Poinsot solids are formed by modifications of dodecahedron and icosahedron.

Keywords: Kepler-Poinsot solid, Shape modeling, Polyhedralgraph, Graph drawing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587