Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30318
Modeling and Simulations of Complex Low- Dimensional systems: Testing the Efficiency of Parallelization

Authors: Ryszard Matysiak, Grzegorz Kamieniarz


The deterministic quantum transfer-matrix (QTM) technique and its mathematical background are presented. This important tool in computational physics can be applied to a class of the real physical low-dimensional magnetic systems described by the Heisenberg hamiltonian which includes the macroscopic molecularbased spin chains, small size magnetic clusters embedded in some supramolecules and other interesting compounds. Using QTM, the spin degrees of freedom are accurately taken into account, yielding the thermodynamical functions at finite temperatures. In order to test the application for the susceptibility calculations to run in the parallel environment, the speed-up and efficiency of parallelization are analyzed on our platform SGI Origin 3800 with p = 128 processor units. Using Message Parallel Interface (MPI) system libraries we find the efficiency of the code of 94% for p = 128 that makes our application highly scalable.

Keywords: parallelization, Deterministic simulations, low-dimensional magnets, modeling of complex systems

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141


[1] G. Kamieniarz, and R. Matysiak, "Simulations of the low-dimensional magnetic systems by the quantum transfer-matrix technique", Comp. Mat. Sci., vol. 28, 2003, pp. 353-365.
[2] G. Kamieniarz, "Computer simulation studies of phase transitions and low-dimensional magnets", Phase Transitions, vol. 57, 1996, pp. 105- 117.
[3] D. Gatteschi, A. Caneschi, and L. Pardi, and R. Sessoli, "Large clusters of metal ions: the transition from molecular to bulk magnets", Science, vol. 265, 1994, pp. 1054-1058.
[4] A. Caneschi, D., Gatteschi, C. Sangregorio, R. Sessoli, L. Sorace, A. Cornia, M.A. Novak, C. Paulsen, and W. Wernsdorfer, "The molecular approach to nanoscale magnetism", J. Magn. Magn. Mat., vol. 200, 1999, pp. 182-201.
[5] D. Gatteschi, R. Sessoli, and A. Cornia, "Single-molecule magnets based on iron(III) oxo clusters", J. Chem. Soc., Chem. Commun., 2000, (9), 725-732.
[6] S.G. Louie, "Nanoparticles behaving oddly", Nature, vol. 384, 1996, pp. 612-613.
[7] T. Delica, and H. Leschke, "Formulation and numerical results of the transfer-matrix method for quantum spin chains", Physica, vol. A168, 1990, 736-767.
[8] A. Caneschi, D. Gatteschi, J. Laugier, P. Rey, R. Sessoli, and C. Zanchini, "Preparation, crystal structure and magnetic properties of an oligonuclear complex with with 12 coupled spins and S=12 ground state", J. Am. Chem. Soc., vol. 110, 1988, pp. 2795-2799.
[9] H. Andres, R. Basler, A.J. Blake, C. Cadiou, G. Chaboussant, C.M. Grant, H.-U. Guedel, M. Murrie, S. Parsons, C. Paulsen, F. Semandini, V. Villar, W. Wensdorfer, and R.E.P. Winpenny, "Studies of a Nickle- Based Single-Molecule Magnet", Chem. - Eur. J., vol. 8, 2002, pp. 5165-5172.
[10] E.F. Van de Velde, Concurrent Scientific Computing, Springer-Verlag New York, Inc. ,1994.
[11] J. Blazewicz, J. Kaczmarek, M. Kasprzak, and J. Weglarz, "Sequential algorithms for DNA sequencing", Comp. Methods Sci.Technol., vol. 1, 1996, pp. 31-42.