Viscoelastic Characterization of Bovine Trabecular Bone Samples
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Viscoelastic Characterization of Bovine Trabecular Bone Samples

Authors: Ramirez D. Edgar I., Angeles H. José J., Ruiz C. Osvaldo, Jacobo A. Victor H., Ortiz P. Armando

Abstract:

Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.

Keywords: Bone viscoelasticity, fatigue test, stress relaxation test, trabecular bone properties.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1107217

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086

References:


[1] Caler W.E., Carter D.R., “Bone creep-fatigue damage accumulation”, J. Biomech., 1989.
[2] Fondrk M., Bahniuk E., Davy D.T., Michaels C., “Some viscoplastic characteristics of bovine and human cortical bone”, J. Biomech., 1988.
[3] Sasaki N., Nakayama Y., Yoshikawa M., Enyo A., “Stress relaxation function of bone and bone collagen”, J. Biomech., 1993.
[4] Iyo T., Maki Y., Sasaki N., Nakata M., “Anisotropic viscoelastic properties of cortical bone”, J. Biomech., 2003.
[5] Lakes R., Katz J.L., Sternstein S., “Viscoelastic properties of wet cortical bone – torsional and biaxial studies”, J. Biomech., 1979.
[6] Lakes R., Katz J.L., “Viscoelastic properties of wet cortical bone, relaxation mechanisms”, J. Biomech., 1979.
[7] Lakes R., Katz J.L., “Viscoelastic properties of wet cortical bone”, J. Biomech., 1979.
[8] Yamashita J., Furman B.R., Rawls H.R., Wang X., “The use of dynamic mechanical analysis to assess the viscoelastic properties of human cortical bone”, J. Biomed. Mater. Res. (Appl. Biomater.), 2001.
[9] Quaglini V., La Russa V., Corneo S., “Nonlinear stress relaxation of trabecular bone”, Mechanics Research Communications, 2008.
[10] Rapillard L., Chalebois M., Zysset P. H., “Compressive fatigue behavior of human trabecular bone”, J. Biomech., 2005.
[11] Topolinsky T., Cichansky A., Mazurkiewicz A., Nowicky K., “Study of the behavior of the trabecular bone under cyclic compression with stepwise increasing amplitude”, J. Biomech., 2011.
[12] Keaveny T.M., Borchers R.D., Gibson L.J., Hayes W.C., “Trabecular bone modulus and strength can depend on specimen geometry”, J. Biomech., 1993.
[13] Choi K., Kuhn J., Ciarelli M., Goldstein S., “The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size dependency of cortical bone modulus”, J. Biomech., 1990.
[14] Guedes R. M., Simoes J. A., Morais J. L., “Viscoelastic behavior of bovine cancellous bone under constant strain rate”, J. Biomech., 2006.
[15] Ashman R.B., Experimental techniques, “Bone Mechanics”, Cowin, S.C., CRC Press, Boca Raton, FL, 1989.
[16] Kaab M.J., Putz R., Gebauer D., Plitz W., “Changes in cadaveric cancellous vertebral bone strength in relation to time. A biomechanical investigation”, Spine, 1998.