Study of Adsorption Isotherm Models on Rare Earth Elements Biosorption for Separation Purposes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Study of Adsorption Isotherm Models on Rare Earth Elements Biosorption for Separation Purposes

Authors: Nice Vasconcelos Coimbra, Fábio dos Santos Gonçalves, Marisa Nascimento, Ellen Cristine Giese

Abstract:

The development of chemical routes for the recovery and separation of rare earth elements (REE) is seen as a priority and strategic action by several countries demanding these elements. Among the possibilities of alternative routes, the biosorption process has been evaluated in our laboratory. In this theme, the present work attempts to assess and fit the solution equilibrium data in Langmuir, Freundlich and DKR isothermal models, based on the biosorption results of the lanthanum and samarium elements by Bacillus subtilis immobilized on calcium alginate gel. It was observed that the preference of adsorption of REE by the immobilized biomass followed the order Sm (III)> La (III). It can be concluded that among the studied isotherms models, the Langmuir model presented better mathematical results than the Freundlich and DKR models.

Keywords: Rare earth elements, biosorption, Bacillus subtilis, adsorption isotherm models.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3298584

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745

References:


[1] N. Das, and D. Das, “Recovery of rare earth metals through biosorption: An overview,” J. Rare Earths, vol. 31, no. 10, pp. 933-943, 2013.
[2] M. K. Jha, A. Kumar, R. Panda, J. R. Kumar, K. Yoo, and J. Y. Lee, “Review on hydrometallurgical recovery of rare earth metals,” Hydrometallurgy, vol. 165, no. 1, pp. 2-26, 2016.
[3] K. Li, Q. Gao, G. Yadavalli, X. Shen, H. Lei, B. Han, K. Xia, and C. Zhou, “Selective adsorption of Gd3+ on a magnetically retrievable imprinted chitosan/carbon nanotube composite with high capacity,” ACS Appl. Mater. Interfaces, vol. 7, pp. 21047-21055, 2015.
[4] Y. Andrès, G. Thouand, M. Boualam, and M. Mergeay “Factors influencing the biosorption of gadolinium by micro-organisms and its mobilisation from sand,” Appl. Microbiol. Biotechnol., vol. 54, pp. 262-267, 2000.
[5] N. Das, “Recovery of precious metals through biosorption - a review,” Hydrometallurgy, vol. 103, pp. 180-189, 2010.
[6] D. Das, C. J. Varshini, and N. Das, “Recovery of lanthanum (III) from aqueous solution using biosorbents of plant and animal origin: Batch and column studies,” Minerals Eng., vol. 69, pp. 40-56, 2014.
[7] T. R. Muraleedharan, L. Philip, L. Iyengar, and C. Venkobachar, “Application studies of biosorption for monazite processing industry effluents,” Biores. Technol., vol. 49, pp. 179-186, 1994.
[8] Y. Takahashi, T. X. Chatellier, K. H. Hattori, K. Kato, and D. Fortin, “Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats,” Chemical Geol., vol. 219, pp. 53-67, 2005.
[9] G. P. Heidelmann, T. M. Roldão, S. G. Egler, M. Nascimento, and E. C. Giese, “Microalgae biomass use for lanthanides biosorption (Translation Journals style),” HOLOS, vol. 6, no. 33, pp. 170-179, 2017.
[10] F. Fu and Q. Wang,” Removal of heavy metal ions from wastewaters: a review,” J. Environ. Manage, vol 92, no. 3, pp. 407-418, 2011.
[11] Y. Arica, G. Bayramoglu, M. Yilmaz, S. Bekta, and Ö. Genç, “Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii,” J. Haz. Materials, vol. B109, pp. 191-199, 2004.
[12] F. N. Corrêa, A. S. Luna, and A. C. A. Costa, “Kinetics and equilibrium of lanthanum biosorption by free and immobilized microalgal cells,” Adsorpt. Sci. Technol., vol. 35, pp. 137-152, 2017.
[13] N. V. Coimbra, M. Nascimento, and E. C. Giese, “Evaluation of the use of bacterial biomass immobilized in biosorption of light and medium rare earth elements (Translation Journals style),” HOLOS, vol. 6, no. 33, pp. 136-146, 2017.
[14] L. G. Covizzi, E. C. Giese, E. Gomes, R. F. H. Dekker, and R. Silva, “Microbial cell immobilization and biotechnological applications (Translation Journals style),” Semina, vol. 28, pp. 143-160, 2007.
[15] P. Martínez and P. Parada, “BioSigma Bioleaching Seeds (BBS): A new technology for managing bioleaching microorganisms,” Adv. Materials Res., vol. 825, p. 305-308, 2013.
[16] I. Michalak, K. Choinacka, A. Witek-Krowiak, “State of the art for the biosorption process – a review,” Appl. Biochem. Biotechnol., vol. 170, pp. 1389-1416, 2013.
[17] R. E. Martinez, O. Pourret, and Y. Takahashi, “Modeling of rare earth element sorption to the Gram-positive Bacillus subtilis bacteria surface,” J. Coll. Inter. Sci., vol. 413, pp. 106-111, 2014.
[18] Y. Takahashi, M. Yamamoto, Y. Yamamoto, K. Tanaka, “EXAFS study on the cause of enrichment of heavy REEs on bacterial cell surfaces,” Geochim. Cosmochim. Acta, vol. 74, pp. 5443-5462, 2010.
[19] S. Markai And Y. Andrès, “Study of the interaction between europium (III) and Bacillus subtilis: fixation sites, biosorption modeling and reversibility,” J. Colloid Interface Sci., vol. 262, no. 2, pp. 351-361, 2003.
[20] R. E. Martinez, O. Pourret, and Y. Takahashi, “Modeling of rare earth element sorption to the Gram positive Bacillus subtilis bacteria surface,” J. Coll. Inter. Sci., vol. 413, pp. 106-111, 2014.
[21] V. Diniz and B. Volesky, “Biosorption of La, Eu and Yb using Sargassum biomass,” Water Res., vol. 39, pp. 239-247, 2005.
[22] D. E. Kratochvil, and B. Volesky, “Advances in the biosorption of heavy metals,” Rev. Tibtech, vol. 16, pp. 291-300, 1998.
[23] A-C. Texier, Y. Andrès, and P. Le Cloirec, “Selective biosorption of lanthanide (La, Eu, Yb) ions by Pseudomonas aeruginosa,” Environ. Sci. Technol., vol. 33, no. 3, pp. 489-495, 1999.
[24] S. Xu, Z. Wang, Y. Gao, S. Zahng, K. Wu, “Adsorption of rare earths (III) using an efficient sodium alginate hydrogel cross-linked with poly-γ-glutamate,” PLoS One, vol. 10, no. 5, pp. e0124826, 2015.
[25] E.C. Giese, C.S. Jordao, and M. Nascimento, “Lanthanide separation by chemically modified bacteria biomass.” In: ERES 2017 The 2nd Conference on European Rare Earth Resources, vol. 1, pp. 126-127, 2017.
[26] I. Langmuir, “Adsorption of gases on plane surfaces of glass, mica and platinum,” J. American Chem. Soc., vol. 40, pp. 1361-1403, 1918.
[27] H. Freundlich, “Over the adsorption in solution,” J. Phys. Chem., vol. 57, pp. 384-410, 1906.
[28] A. Dabrowski, “Adsorption-from theory to practice,” Adv. Coll. Inter. Sci., vol. 93, pp. 135-224, 2001.
[29] A. Sari, and M. Tuzen, “Removal of mercury (II) from aqueous solution using moss (Drepanocladus revolvens) biomass: Equilibrium, thermodynamic and kinetic studies,” J. Hazard. Mater., vol. 171, pp. 500-507, 2009.
[30] T. A. Khan, M. Nazir, I. Ali, and A. Kumar, “Removal of Chromium (VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent,” Arabian J. Chem., vol. 10, pp. S2388-S2398, 2017.