Search results for: micro climate monitoring
192 Evaluation of Energy and Environmental Aspects of Reduced Tillage Systems Applied in Maize Cultivation
Authors: E. Sarauskis, L. Masilionyte, Z. Kriauciuniene, K. Romaneckas, S. Buragiene
Abstract:
In maize growing technologies, tillage technological operations are the most time-consuming and require the greatest fuel input. Substitution of conventional tillage, involving deep ploughing, by other reduced tillage methods can reduce technological production costs, diminish soil degradation and environmental pollution from greenhouse gas emissions, as well as improve economic competitiveness of agricultural produce.
Experiments designed to assess energy and environmental aspects associated with different reduced tillage systems, applied in maize cultivation were conducted at Aleksandras Stulginskis University taking into account Lithuania’s economic and climate conditions. The study involved 5 tillage treatments: deep ploughing (DP, control), shallow ploughing (SP), deep cultivation (DC), shallow cultivation (SC) and no-tillage (NT).
Our experimental evidence suggests that with the application of reduced tillage systems it is feasible to reduce fuel consumption by 13-58% and working time input by 8.4% to nearly 3-fold, to reduce the cost price of maize cultivation technological operations, decrease environmental pollution with CO2 gas by 30 to 146 kg ha-1, compared with the deep ploughing.
Keywords: Reduced tillage, energy and environmental assessment, fuel consumption, CO2 emission, maize.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094191 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction
Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain
Abstract:
Climate change and environmental pressures are major international issues nowadays. It is time when governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies. This is the prime time to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to its engineering, financial, environmental and ecological benefits. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate. Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3889 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.
Keywords: Waste glass, recycling, environmentally friendly, glass aggregate, strength development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7924190 Influence of Environment-Friendly Organic Wastes on the Properties of Sandy Soil under Growing Zea mays L. in Arid Regions
Authors: Mohamed Rashad, Mohamed Hafez, Mohamed Emran, Emad Aboukila, Ibrahim Nassar
Abstract:
Environment-friendly organic wastes of Brewers' spent grain, a byproduct of the brewing process, have recently used as soil amendment to improve soil fertility and plant production. In this work, treatments of 1% (T1) and 2% (T2) of spent grains, 1% (C1) and 2% (C2) of compost and mix of both sources (C1T1) were used and compared to the control for growing Zea mays L. on sandy soil under arid Mediterranean climate. Soils were previously incubated at 65% saturation capacity for a month. The most relevant soil physical and chemical parameters were analysed. Water holding capacity and soil organic matter (OM) increased significantly along the treatments with the highest values in T2. Soil pH decreased along the treatments and the lowest pH was in C1T1. Bicarbonate decreased by 69% in C1T1 comparing to control. Total nitrogen (TN) and available P varied significantly among all treatments and T2, C1T1 and C2 treatments increased 25, 17 and 11 folds in TN and 1.2, 0.6 and 0.3 folds in P, respectively related to control. Available K showed the highest values in C1T1. Soil micronutrients increased significantly along all treatments with the highest values in T2. After corn germination, significant variation was observed in the velocity of germination coefficients (VGC) among all treatments in the order of C1T1>T2>T1>C2>C1>control. The highest records of final germination and germination index were in C1T1 and T2. The spent grains may compensate deficiencies of macro and micronutrients in newly reclaimed sandy soils without adverse effects to sustain crop production with a rider that excessive or continuous use need to be circumvented.Keywords: Spent grain, compost, micronutrients, macronutrients, water holding capacity, plant growth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139189 Statistical Analysis and Optimization of a Process for CO2 Capture
Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi
Abstract:
CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.
Keywords: Bubble column reactor, CO2 capture, Response Surface Methodology, water desalination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844188 Socio-Economic Influences on Soilless Agriculture
Authors: G. V. Byrd, B. B. Ghaley, E. Hayashi
Abstract:
In urban farming, research and innovation are taking place at an unprecedented pace, and soilless growing technologies are emerging at different rates motivated by different objectives in various parts of the world. Local food production is ultimately a main objective everywhere, but adoption rates and expressions vary with socio-economic drivers. Herein, the status of hydroponics and aquaponics is summarized for four countries with diverse socio-economic settings: Europe (Denmark), Asia (Japan and Nepal) and North America (US). In Denmark, with a strong environmental ethic, soilless growing is increasing in urban agriculture because it is considered environmentally friendly. In Japan, soil-based farming is being replaced with commercial plant factories using advanced technology such as complete environmental control and computer monitoring. In Nepal, where rapid loss of agricultural land is occurring near cities, dozens of hydroponics and aquaponics systems have been built in the past decade, particularly in “non-traditional” sites such as roof tops to supplement family food. In the US, where there is also strong interest in locally grown fresh food, backyard and commercial systems have proliferated. Nevertheless, soilless growing is still in the research and development and early adopter stages, and the broad contribution of hydroponics and aquaponics to food security is yet to be fully determined. Nevertheless, current adoption of these technologies in diverse environments in different socio-economic settings highlights the potential contribution to food security with social and environmental benefits which contribute to several Sustainable Development Goals.
Keywords: Aquaponics, hydroponics, soilless agriculture, urban agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199187 The Impact of Hospital Intensive Care Unit Window Design on Daylighting and Energy Performance in Desert Climate
Authors: A. Sherif, H. Sabry, A. Elzafarany, M. Gadelhak, R. Arafa, M. Aly
Abstract:
This paper addresses the design of hospital Intensive Care Unit windows for the achievement of visual comfort and energy savings. The aim was to identify the window size and shading system configurations that could fulfill daylighting adequacy, avoid glare and reduce energy consumption. The study focused on addressing the effect of utilizing different shading systems in association with a range of Window-to-Wall Ratios (WWR) in different orientations under the desert clear-sky of Cairo, Egypt. The results of this study demonstrated that solar penetration is a critical concern affecting the design of ICU windows in desert locations, as in Cairo, Egypt. Use of shading systems was found to be essential in providing acceptable daylight performance and energy saving. Careful positioning of the ICU window towards a proper orientation can dramatically improve performance. It was observed that ICU windows facing the north direction enjoyed the widest range of successful window configuration possibilities at different WWRs. ICU windows facing south enjoyed a reasonable number of configuration options as well. By contrast, the ICU windows facing the east orientation had a very limited number of options that provide acceptable performance. These require additional local shading measures at certain times due to glare incidence. Moreover, use of horizontal sun breakers and solar screens to protect the ICU windows proved to be more successful than the other alternatives in a wide range of Window to Wall Ratios. By contrast, the use of light shelves and vertical shading devices seemed questionable.Keywords: Daylighting, Desert, Energy Efficiency, Shading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237186 Energy Supply, Demand and Environmental Analysis – A Case Study of Indian Energy Scenario
Authors: I.V. Saradhi, G.G. Pandit, V.D. Puranik
Abstract:
Increasing concerns over climate change have limited the liberal usage of available energy technology options. India faces a formidable challenge to meet its energy needs and provide adequate energy of desired quality in various forms to users in sustainable manner at reasonable costs. In this paper, work carried out with an objective to study the role of various energy technology options under different scenarios namely base line scenario, high nuclear scenario, high renewable scenario, low growth and high growth rate scenario. The study has been carried out using Model for Energy Supply Strategy Alternatives and their General Environmental Impacts (MESSAGE) model which evaluates the alternative energy supply strategies with user defined constraints on fuel availability, environmental regulations etc. The projected electricity demand, at the end of study period i.e. 2035 is 500490 MWYr. The model predicted the share of the demand by Thermal: 428170 MWYr, Hydro: 40320 MWYr, Nuclear: 14000 MWYr, Wind: 18000 MWYr in the base line scenario. Coal remains the dominant fuel for production of electricity during the study period. However, the import dependency of coal increased during the study period. In baseline scenario the cumulative carbon dioxide emissions upto 2035 are about 11,000 million tones of CO2. In the scenario of high nuclear capacity the carbon dioxide emissions reduced by 10 % when nuclear energy share increased to 9 % compared to 3 % in baseline scenario. Similarly aggressive use of renewables reduces 4 % of carbon dioxide emissions.Keywords: Carbon dioxide, energy, electricity, message.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2762185 Development of a Telemedical Network Supporting an Automated Flow Cytometric Analysis for the Clinical Follow-up of Leukaemia
Authors: Claude Takenga, Rolf-Dietrich Berndt, Erling Si, Markus Diem, Guohui Qiao, Melanie Gau, Michael Brandstoetter, Martin Kampel, Michael Dworzak
Abstract:
In patients with acute lymphoblastic leukaemia (ALL), treatment response is increasingly evaluated with minimal residual disease (MRD) analyses. Flow Cytometry (FCM) is a fast and sensitive method to detect MRD. However, the interpretation of these multi-parametric data requires intensive operator training and experience. This paper presents a pipeline-software, as a ready-to-use FCM-based MRD-assessment tool for the daily clinical practice for patients with ALL. The new tool increases accuracy in assessment of FCM-MRD in samples which are difficult to analyse by conventional operator-based gating since computer-aided analysis potentially has a superior resolution due to utilization of the whole multi-parametric FCM-data space at once instead of step-wise, two-dimensional plot-based visualization. The system developed as a telemedical network reduces the work-load and lab-costs, staff-time needed for training, continuous quality control, operator-based data interpretation. It allows dissemination of automated FCM-MRD analysis to medical centres which have no established expertise for the benefit of an even larger community of diseased children worldwide. We established a telemedical network system for analysis and clinical follow-up and treatment monitoring of Leukaemia. The system is scalable and adapted to link several centres and laboratories worldwide.Keywords: Data security, flow cytometry, leukaemia, telematics platform, telemedicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568184 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather
Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa
Abstract:
A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Zimbabwe has no study that notes if grid failures have been caused by GICs. Research and monitoring are needed to investigate this possible relationship purpose of this paper is to characterize GICs with a power grid network. This paper analyses data collected, which are geomagnetic data, which include the Kp index, Disturbance storm time (DST) index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.
Keywords: Adverse space weather, DST index, geomagnetically induced currents, Kp index, reactive power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158183 Methane versus Carbon Dioxide: Mitigation Prospects
Authors: Alexander J. Severinsky, Allen L. Sessoms
Abstract:
Atmospheric carbon dioxide (CO2) has dominated the discussion around the causes of climate change. This is a reflection of a 100-year time horizon for all greenhouse gases that became a norm. The 100-year time horizon is much too long – and yet, almost all mitigation efforts, including those set in the near-term frame of within 30 years, are still geared toward it. In this paper, we show that for a 30-year time horizon, methane (CH4) is the greenhouse gas whose radiative forcing exceeds that of CO2. In our analysis, we use the radiative forcing of greenhouse gases in the atmosphere, because they directly affect the rise in temperature on Earth. We found that in 2019, the radiative forcing (RF) of methane was ~2.5 W/m2 and that of carbon dioxide was ~2.1 W/m2. Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m2 and ~3.1 W/m2 respectively. There is a substantial spread in the data for anthropogenic and natural methane (CH4) emissions, along with natural gas, (which is primarily CH4), leakages from industrial production to consumption. For this reason, we estimate the minimum and maximum effects of a reduction of these leakages, and assume an effective immediate reduction by 80%. Such action may serve to reduce the annual radiative forcing of all CH4 emissions by ~15% to ~30%. This translates into a reduction of RF by 2050 from ~2.8 W/m2 to ~2.5 W/m2 in the case of the minimum effect that can be expected, and to ~2.15 W/m2 in the case of the maximum effort to reduce methane leakages. Under the BAU, we find that the RF of CO2 will increase from ~2.1 W/m2 now to ~3.1 W/m2 by 2050. We assume a linear reduction of 50% in anthropogenic emission over the course of the next 30 years, which would reduce the radiative forcing of CO2 from ~3.1 W/m2 to ~2.9 W/m2. In the case of "net zero," the other 50% of only anthropogenic CO2 emissions reduction would be limited to being either from sources of emissions or directly from the atmosphere. In this instance, the total reduction would be from ~3.1 W/m2 to ~2.7 W/m2, or ~0.4 W/m2. To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m2, an additional reduction of radiative forcing of CO2 would be approximately 2.7 -2.15 = 0.55 W/m2. In total, one would need to remove ~660 GT of CO2 from the atmosphere in order to match the maximum reduction of current methane leakages, and ~270 GT of CO2 from emitting sources, to reach "negative emissions". This amounts to over 900 GT of CO2.
Keywords: Methane Leakages, Methane Radiative Forcing, Methane Mitigation, Methane Net Zero.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646182 Changes of Poultry Meat Chemical Composition, in Relationship with Lighting Schedule
Authors: P. C. Boisteanu, M. G. Usturoi, Roxana Lazar, B. V. Avarvarei
Abstract:
The paper is included within the framework of a complex research program, which was initiated from the hypothesis arguing on the existence of a correlation between pineal indolic and peptide hormones and the somatic development rhythm, including thus the epithalamium-epiphysis complex involvement. At birds, pineal gland contains a circadian oscillator, playing a main role in the temporal organization of the cerebral functions. The secretion of pineal indolic hormones is characterized by a high endogenous rhythmic alternation, modulated by the light/darkness (L/D) succession and by temperature as well. The research has been carried out using 100 chicken broilers - “Ross" commercial hybrid, randomly allocated in two experimental batches: Lc batch, reared under a 12L/12D lighting schedule and Lexp batch, which was photic pinealectomised through continuous exposition to light (150 lux, 24 hours, 56 days). Chemical and physical features of the meat issued from breast fillet and thighs muscles have been studied, determining the dry matter, proteins, fat, collagen, salt content and pH value, as well. Besides the variations of meat chemical composition in relation with lighting schedule, other parameters have been studied: live weight dynamics, feed intake and somatic development degree. The achieved results became significant since chickens have 7 days of age, some variations of the studied parameters being registered, revealing that the pineal gland physiologic activity, in relation with the lighting schedule, could be interpreted through the monitoring of the somatic development technological parameters, usually studied within the chicken broilers rearing aviculture practice.Keywords: lighting schedule, physic-chemical characteristics ofmeat, pineal gland at birds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583181 Nonlinear Estimation Model for Rail Track Deterioration
Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami
Abstract:
Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.
Keywords: ANFIS, MGT, Prediction modeling, rail track degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595180 Study of Compatibility and Oxidation Stability of Vegetable Insulating Oils
Authors: Helena M. Wilhelm, Paulo O. Fernandes, Laís P. Dill, Kethlyn G. Moscon
Abstract:
The use of vegetable oil (or natural ester) as an insulating fluid in electrical transformers is a trend that aims to contribute to environmental preservation since it is biodegradable and non-toxic. Besides, vegetable oil has high flash and combustion points, being considered a fire safety fluid. However, vegetable oil is usually less stable towards oxidation than mineral oil. Both insulating fluids, mineral and vegetable oils, need to be tested periodically according to specific standards. Oxidation stability can be determined by the induction period measured by conductivity method (Rancimat) by monitoring the effectivity of oil’s antioxidant additives, a methodology already developed for food application and biodiesel but still not standardized for insulating fluids. Besides adequate oxidation stability, fluids must be compatible with transformer's construction materials under normal operating conditions to ensure that damage to the oil and parts of the transformer does not occur. ASTM standard and Brazilian normative differ in parameters evaluated, which reveals the need to regulate tests for each oil type. The aim of this study was to assess oxidation stability and compatibility of vegetable oils to suggest the best way to assure a viable performance of vegetable oil as transformer insulating fluid. The determination of the induction period for several vegetable insulating oils from the local market by using Rancimat was carried out according to BS EN 14112 standard, at different temperatures (110, 120, and 130 °C). Also, the compatibility of vegetable oil was assessed according to ASTM and ABNT NBR standards. The main results showed that the best temperature for use in the Rancimat test is 130 °C, which allows a better observation of conductivity change. The compatibility test results presented differences between vegetable and mineral oil standards that should be taken into account in oil testing since materials compatibility and oxidation stability are essential for equipment reliability.
Keywords: Compatibility, Rancimat, natural ester, vegetable oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609179 A Study of Cardio Pulmonary Changes during Upper Gastrointestinal Endoscopy
Authors: Sharan Badiger, Prema T. Akkasaligar, P. Amith Kumar
Abstract:
Upper gastrointestinal endoscopy is a commonly performed diagnostic and therapeutic procedure and has many adverse effects like cardiopulmonary complications, complications related to sedation, infectious complications, bleeding and perforation. So this study was undertaken to evaluate important variables like patient’s age, gender and stage of the procedure in relation to the cardiopulmonary changes during diagnostic upper gastrointestinal endoscopy by monitoring oxygen saturation, blood pressure, heart rate and electrocardiogram. This is a prospective longitudinal hospital based study involving a total of 140 consecutive patients, at Sri. B. M. Patil Medical College, Hospital and Research Centre. Cardiopulmonary changes during upper gastrointestinal endoscopy are more common in the age groups of 51-60 years, with equal frequency in both male and female. Oxygen saturation levels decreased by about 4% in both sexes during introduction of endoscopy. Mild to moderate hypoxia was found in 32% of the study group. Severe hypoxia was found in 5% of the patients, mostly in those patients who are above 50 years of age. Tachycardia was noted in 88% of the study group patients. Blood pressure increased to hypertension levels in 22 patients (15.7%) which returned to normal within few minutes after the procedure. S-T depression was noticed in 4% of patients and T wave inversion in 8% of patients during upper gastrointestinal endoscopy. All these changes disappeared after 10 minutes after the endoscopy. Cardiopulmonary changes are common during upper gastrointestinal endoscopy. Maximum changes in oxygen saturation, heart rate and blood pressure occurred immediately after the introduction of endoscope. The cardiopulmonary changes did not manifest into any identifiable clinical symptoms. The rate of recovery was faster in younger age groups and women.
Keywords: Blood Pressure, Cardio-Pulmonary, Heart Rate, Oxygen Saturation, Upper Gastrointestinal Endoscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3216178 Lighting Consumption Analysis in Retail Industry: Comparative Study
Authors: Elena C. Tamaş, Grațiela M. Țârlea, Gianni Flamaropol, Dragoș Hera
Abstract:
This article is referring to a comparative study regarding the electrical energy consumption for lighting on diverse types of big sizes commercial buildings built in Romania after 2007, having 3, 4, 5 versus 8, 9, 10 operational years. Some buildings have installed building management systems (BMS) to monitor also the lighting performances starting with the opening days till the present days but some have chosen only local meters to implement. Firstly, for each analyzed building, the total required energy power and the energy power consumption for lighting were calculated depending on the lamps number, the unit power and the average daily running hours. All objects and installations were chosen depending on the destination/location of the lighting (exterior parking or access, interior or covering parking, building interior and building perimeter). Secondly, to all lighting objects and installations, mechanical counters were installed, and to the ones linked to BMS there were installed the digital meters as well for a better monitoring. Some efficient solutions are proposed to improve the power consumption, for example the 1/3 lighting functioning for the covered and exterior parking lighting to those buildings if can be done. This type of lighting share can be performed on each level, especially on the night shifts. Another example is to use the dimmers to reduce the light level, depending on the executed work in the respective area, and a 30% power energy saving can be achieved. Using the right BMS to monitor, the energy consumption depending on the average operational daily hours and changing the non-performant unit lights with the ones having LED technology or economical ones might increase significantly the energy performances and reduce the energy consumption of the buildings.
Keywords: Lighting consumption, commercial buildings, maintenance, energy performances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977177 The Performance Analysis of Valveless Micropump with Contoured Nozzle/Diffuser
Authors: Cheng-Chung Yang, Jr-Ming Miao, Fuh-Lin Lih, Tsung-Lung Liu, Ming-Hui Ho
Abstract:
The operation performance of a valveless micro-pump is strongly dependent on the shape of connected nozzle/diffuser and Reynolds number. The aims of present work are to compare the performance curves of micropump with the original straight nozzle/diffuser and contoured nozzle/diffuser under different back pressure conditions. The tested valveless micropumps are assembled of five pieces of patterned PMMA plates with hot-embracing technique. The structures of central chamber, the inlet/outlet reservoirs and the connected nozzle/diffuser are fabricated with laser cutting machine. The micropump is actuated with circular-type PZT film embraced on the bottom of central chamber. The deformation of PZT membrane with various input voltages is measured with a displacement laser probe. A simple testing facility is also constructed to evaluate the performance curves for comparison. In order to observe the evaluation of low Reynolds number multiple vortex flow patterns within the micropump during suction and pumping modes, the unsteady, incompressible laminar three-dimensional Reynolds-averaged Navier-Stokes equations are solved. The working fluid is DI water with constant thermo-physical properties. The oscillating behavior of PZT film is modeled with the moving boundary wall in way of UDF program. With the dynamic mesh method, the instants pressure and velocity fields are obtained and discussed.Results indicated that the volume flow rate is not monotony increased with the oscillating frequency of PZT film, regardless of the shapes of nozzle/diffuser. The present micropump can generate the maximum volume flow rate of 13.53 ml/min when the operation frequency is 64Hz and the input voltage is 140 volts. The micropump with contoured nozzle/diffuser can provide 7ml/min flow rate even when the back pressure is up to 400 mm-H2O. CFD results revealed that the flow central chamber was occupied with multiple pairs of counter-rotating vortices during suction and pumping modes. The net volume flow rate over a complete oscillating periodic of PZTKeywords: valveless micropump、PZT diagraph、contoured nozzle/diffuser、vortex flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2854176 Review of the Road Crash Data Availability in Iraq
Authors: Abeer K. Jameel, Harry Evdorides
Abstract:
Iraq is a middle income country where the road safety issue is considered one of the leading causes of deaths. To control the road risk issue, the Iraqi Ministry of Planning, General Statistical Organization started to organise a collection system of traffic accidents data with details related to their causes and severity. These data are published as an annual report. In this paper, a review of the available crash data in Iraq will be presented. The available data represent the rate of accidents in aggregated level and classified according to their types, road users’ details, and crash severity, type of vehicles, causes and number of causalities. The review is according to the types of models used in road safety studies and research, and according to the required road safety data in the road constructions tasks. The available data are also compared with the road safety dataset published in the United Kingdom as an example of developed country. It is concluded that the data in Iraq are suitable for descriptive and exploratory models, aggregated level comparison analysis, and evaluation and monitoring the progress of the overall traffic safety performance. However, important traffic safety studies require disaggregated level of data and details related to the factors of the likelihood of traffic crashes. Some studies require spatial geographic details such as the location of the accidents which is essential in ranking the roads according to their level of safety, and name the most dangerous roads in Iraq which requires tactic plan to control this issue. Global Road safety agencies interested in solve this problem in low and middle-income countries have designed road safety assessment methodologies which are basing on the road attributes data only. Therefore, in this research it is recommended to use one of these methodologies.
Keywords: Data availability, Iraq, road safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931175 Analysis of Driver Point of Regard Determinations with Eye-Gesture Templates Using Receiver Operating Characteristic
Authors: Siti Nor Hafizah binti Mohd Zaid, Mohamed Abdel-Maguid, Abdel-Hamid Soliman
Abstract:
An Advance Driver Assistance System (ADAS) is a computer system on board a vehicle which is used to reduce the risk of vehicular accidents by monitoring factors relating to the driver, vehicle and environment and taking some action when a risk is identified. Much work has been done on assessing vehicle and environmental state but there is still comparatively little published work that tackles the problem of driver state. Visual attention is one such driver state. In fact, some researchers claim that lack of attention is the main cause of accidents as factors such as fatigue, alcohol or drug use, distraction and speeding all impair the driver-s capacity to pay attention to the vehicle and road conditions [1]. This seems to imply that the main cause of accidents is inappropriate driver behaviour in cases where the driver is not giving full attention while driving. The work presented in this paper proposes an ADAS system which uses an image based template matching algorithm to detect if a driver is failing to observe particular windscreen cells. This is achieved by dividing the windscreen into 24 uniform cells (4 rows of 6 columns) and matching video images of the driver-s left eye with eye-gesture templates drawn from images of the driver looking at the centre of each windscreen cell. The main contribution of this paper is to assess the accuracy of this approach using Receiver Operating Characteristic analysis. The results of our evaluation give a sensitivity value of 84.3% and a specificity value of 85.0% for the eye-gesture template approach indicating that it may be useful for driver point of regard determinations.
Keywords: Advanced Driver Assistance Systems, Eye-Tracking, Hazard Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632174 Spatial Mapping of Dengue Incidence: A Case Study in Hulu Langat District, Selangor, Malaysia
Authors: Er, A. C., Rosli, M. H., Asmahani A., Mohamad Naim M. R., Harsuzilawati M.
Abstract:
Dengue is a mosquito-borne infection that has peaked to an alarming rate in recent decades. It can be found in tropical and sub-tropical climate. In Malaysia, dengue has been declared as one of the national health threat to the public. This study aimed to map the spatial distributions of dengue cases in the district of Hulu Langat, Selangor via a combination of Geographic Information System (GIS) and spatial statistic tools. Data related to dengue was gathered from the various government health agencies. The location of dengue cases was geocoded using a handheld GPS Juno SB Trimble. A total of 197 dengue cases occurring in 2003 were used in this study. Those data then was aggregated into sub-district level and then converted into GIS format. The study also used population or demographic data as well as the boundary of Hulu Langat. To assess the spatial distribution of dengue cases three spatial statistics method (Moran-s I, average nearest neighborhood (ANN) and kernel density estimation) were applied together with spatial analysis in the GIS environment. Those three indices were used to analyze the spatial distribution and average distance of dengue incidence and to locate the hot spot of dengue cases. The results indicated that the dengue cases was clustered (p < 0.01) when analyze using Moran-s I with z scores 5.03. The results from ANN analysis showed that the average nearest neighbor ratio is less than 1 which is 0.518755 (p < 0.0001). From this result, we can expect the dengue cases pattern in Hulu Langat district is exhibiting a cluster pattern. The z-score for dengue incidence within the district is -13.0525 (p < 0.0001). It was also found that the significant spatial autocorrelation of dengue incidences occurs at an average distance of 380.81 meters (p < 0.0001). Several locations especially residential area also had been identified as the hot spots of dengue cases in the district.
Keywords: Dengue, geographic information system (GIS), spatial analysis, spatial statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5368173 Social Media: The Major Trigger of Online and Offline Political Activism
Authors: Chan Eang Teng, Tang Mui Joo
Abstract:
With the viral factor on social media, the sense of persuasion is generated by repetition and popularity. When users’ interest is captured, political awareness increases to spark political enthusiasm, but, the level of user’s political participation and political attitude of those active users is still questionable. An online survey on 250 youth and in-depth interview on two politicians are conducted to answer the main question in this paper. The result shows that Facebook significantly increases political awareness among youths. Social media may not be the major trigger to political activism among youths as most respondents opined that they would still vote without Facebook. Other factors could be political campaigning, political climate, age, peer pressure or others. Finding also shows that majority of respondents did not participate in online political debates or political groups. Many also wondered if the social media was the main power switch that triggers the political influx among young voters. The research finding is significant to understand how the new media, Facebook, has reshaped the political landscape in Malaysia, creating the Social Media Election that changed the rules of the political game. However, research finding does not support the ideal notion that the social media is the major trigger to youth’s political activism. This research outcome has exposed the flaws of the Social Media Election. It has revealed the less optimistic side of youth political activism. Unfortunately, results fall short of the idealistic belief that the social media have given rise to political activism among youths in the 13th General Election in Malaysia. The research outcome also highlights an important lesson for the democratic discourse of Malaysia which is making informed and educated decisions takes more commitment, proactive and objective attitude.Keywords: Social media, political participation, political activism, democracy, political communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2629172 Transformation of Aluminum Unstable Oxyhydroxides in Ultrafine α-Al2O3 in Presence of Various Seeds
Authors: T. Kuchukhidze, N. Jalagonia, Z. Phachulia, R. Chedia
Abstract:
Ceramic obtained on the base of aluminum oxide has wide application range, because it has unique properties, for example, wear-resistance, dielectric characteristics, and exploitation ability at high temperatures and in corrosive atmosphere. Low temperature synthesis of α-Al2O3 is energo-economical process and it is topical for developing technologies of corundum ceramics fabrication. In the present work possibilities of low temperature transformation of oxyhydroxides in α-Al2O3, during the presence of small amount of rare–earth elements compounds (also Th, Re), have been discussed. Aluminum unstable oxyhydroxides have been obtained by hydrolysis of aluminium isopropoxide, nitrates, sulphate, and chloride in alkaline environment at 80-90ºC temperatures. β-Al(OH)3 has been received from aluminum powder by ultrasonic development. Drying of oxyhydroxide sol has been conducted with presence of various types seeds, which amount reaches 0,1-0,2% (mas). Neodymium, holmium, thorium, lanthanum, cerium, gadolinium, disprosium nitrates and rhenium carbonyls have been used as seeds and they have been added to the sol specimens in amount of 0.1-0.2% (mas) calculated on metals. Annealing of obtained gels is carried out at 70– 1100ºC for 2 hrs. The same specimen transforms in α-Al2O3 at 1100ºC. At this temperature in case of presence of lanthanum and gadolinium transformation takes place by 70-85%. In case of presence of thorium stabilization of γ-and θ-phases takes place. It is established, that thorium causes inhibition of α-phase generation at 1100ºC, and at the time when in all other doped specimens α-phase is generated at lower temperatures (1000-1050ºC). Synthesis of various type compounds and simultaneous consolidation has developed in the furnace of OXY-GON. Composite materials containing oxide and non-oxide components close to theoretical data have been obtained in this furnace respectively. During the work the following devices have been used: X-ray diffractometer DRON-3M (Cu-Kα, Ni filter, 2º/min), High temperature vacuum furnace OXY-GON, electronic scanning microscopes Nikon ECLIPSE LV 150, NMM-800TRF, planetary mill Pulverisette 7 premium line, SHIMADZU Dynamic Ultra Micro Hardness Tester, DUH-211S, Analysette 12 Dyna sizer.Keywords: α-Alumina, combustion, consolidation, phase transformation, seeding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4084171 Water and Soil Environment Pollution Reduction by Filter Strips
Authors: Roy R. Gu, Mahesh Sahu, Xianggui Zhao
Abstract:
Contour filter strips planted with perennial vegetation can be used to improve surface and ground water quality by reducing pollutant, such as NO3-N, and sediment outflow from cropland to a river or lake. Meanwhile, the filter strips of perennial grass with biofuel potentials also have economic benefits of producing ethanol. In this study, The Soil and Water Assessment Tool (SWAT) model was applied to the Walnut Creek Watershed to examine the effectiveness of contour strips in reducing NO3-N outflows from crop fields to the river or lake. Required input data include watershed topography, slope, soil type, land-use, management practices in the watershed and climate parameters (precipitation, maximum/minimum air temperature, solar radiation, wind speed and relative humidity). Numerical experiments were conducted to identify potential subbasins in the watershed that have high water quality impact, and to examine the effects of strip size and location on NO3-N reduction in the subbasins under various meteorological conditions (dry, average and wet). Variable sizes of contour strips (10%, 20%, 30% and 50%, respectively, of a subbasin area) planted with perennial switchgrass were selected for simulating the effects of strip size and location on stream water quality. Simulation results showed that a filter strip having 10%-50% of the subbasin area could lead to 55%- 90% NO3-N reduction in the subbasin during an average rainfall year. Strips occupying 10-20% of the subbasin area were found to be more efficient in reducing NO3-N when placed along the contour than that when placed along the river. The results of this study can assist in cost-benefit analysis and decision-making in best water resources management practices for environmental protection.Keywords: modeling, SWAT, water quality, NO3-N, watershed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742170 Implementation of the Personal Emergency Response System
Authors: Ah-young Jeon, In-cheol Kim, Jae-hee Jung, Soo-young Ye, Jae-hyung Kim, Ki-gon Nam, Seoung-wan Baik, Jung-hoon Ro, Gye-rok Jeon
Abstract:
The aged are faced with increasing risk for falls. The aged have the easily fragile bones than others. When falls have occurred, it is important to detect this emergency state because such events often lead to more serious illness or even death. A implementation of PDA system, for detection of emergency situation, was developed using 3-axis accelerometer in this paper as follows. The signals were acquired from the 3-axis accelerometer, and then transmitted to the PDA through Bluetooth module. This system can classify the human activity, and also detect the emergency state like falls. When the fall occurs, the system generates the alarm on the PDA. If a subject does not respond to the alarm, the system determines whether the current situation is an emergency state or not, and then sends some information to the emergency center in the case of urgent situation. Three different studies were conducted on 12 experimental subjects, with results indicating a good accuracy. The first study was performed to detect the posture change of human daily activity. The second study was performed to detect the correct direction of fall. The third study was conducted to check the classification of the daily physical activity. Each test was lasted at least 1 min. in third study. The output of acceleration signal was compared and evaluated by changing a various posture after attaching a 3-axis accelerometer module on the chest. The newly developed system has some important features such as portability, convenience and low cost. One of the main advantages of this system is that it is available at home healthcare environment. Another important feature lies in low cost to manufacture device. The implemented system can detect the fall accurately, so will be widely used in emergency situation.Keywords: Alarm System, Ambulatory monitoring, Emergency detection, Classification of activity, and 3-axis accelerometer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596169 Application of HSA and GA in Optimal Placement of FACTS Devices Considering Voltage Stability and Losses
Authors: A. Parizad, A. Khazali, M. Kalantar
Abstract:
Voltage collapse is instability of heavily loaded electric power systems that cause to declining voltages and blackout. Power systems are predicated to become more heavily loaded in the future decade as the demand for electric power rises while economic and environmental concerns limit the construction of new transmission and generation capacity. Heavily loaded power systems are closer to their stability limits and voltage collapse blackouts will occur if suitable monitoring and control measures are not taken. To control transmission lines, it can be used from FACTS devices. In this paper Harmony search algorithm (HSA) and Genetic Algorithm (GA) have applied to determine optimal location of FACTS devices in a power system to improve power system stability. Three types of FACTS devices (TCPAT, UPFS, and SVC) have been introduced. Bus under voltage has been solved by controlling reactive power of shunt compensator. Also a combined series-shunt compensators has been also used to control transmission power flow and bus voltage simultaneously. Different scenarios have been considered. First TCPAT, UPFS, and SVC are placed solely in transmission lines and indices have been calculated. Then two types of above controller try to improve parameters randomly. The last scenario tries to make better voltage stability index and losses by implementation of three types controller simultaneously. These scenarios are executed on typical 34-bus test system and yields efficiency in improvement of voltage profile and reduction of power losses; it also may permit an increase in power transfer capacity, maximum loading, and voltage stability margin.Keywords: FACTS Devices, Voltage Stability Index, optimal location, Heuristic methods, Harmony search, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011168 Enhancing Students’ Performance in Basic Science and Technology in Nigeria Using Moodle LMS
Authors: Olugbade Damola, Adekomi Adebimbo, Sofowora Olaniyi Alaba
Abstract:
One of the major problems facing education in Nigeria is the provision of quality Science and Technology education. Inadequate teaching facilities, non-usage of innovative teaching strategies, ineffective classroom management, lack of students’ motivation and poor integration of ICT has resulted in the increase in percentage of students who failed Basic Science and Technology in Junior Secondary Certification Examination for National Examination Council in Nigeria. To address these challenges, the Federal Government came up with a road map on education. This was with a view of enhancing quality education through integration of modern technology into teaching and learning, enhancing quality assurance through proper monitoring and introduction of innovative methods of teaching. This led the researcher to investigate how MOODLE LMS could be used to enhance students’ learning outcomes in BST. A sample of 120 students was purposively selected from four secondary schools in Ogbomoso. The experimental group was taught using MOODLE LMS, while the control group was taught using the conventional method. Data obtained were analyzed using mean, standard deviation and t-test. The result showed that MOODLE LMS was an effective learning platform in teaching BST in junior secondary schools (t=4.953, P<0.05). Students’ attitudes towards BST was also enhanced through MOODLE LMS (t=15.632, P<0.05). The use of MOODLE LMS significantly enhanced students’ retention (t=6.640, P<0.05). In conclusion, the Federal Government efforts at enhancing quality assurance through integration of modern technology and e-learning in Secondary schools proved to have yielded good result has students found MOODLE LMS to be motivating and interactive. Attendance was improved.
Keywords: MOODLE, learning management system, quality assurance, basic science and technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3524167 Heavy Metal Contents in Vegetable Oils of Kazakhstan Origin and Life Risk Assessment
Authors: A. E. Mukhametov, M. T. Yerbulekova, D. R. Dautkanova, G. A. Tuyakova, G. Aitkhozhayeva
Abstract:
The accumulation of heavy metals in food is a constant problem in many parts of the world. Vegetable oils are widely used, both for cooking and for processing in the food industry, meeting the main dietary requirements. One of the main chemical pollutants, heavy metals, is usually found in vegetable oils. These chemical pollutants are carcinogenic, teratogenic and immunotoxic, harmful to consumption and have a negative effect on human health even in trace amounts. Residues of these substances can easily accumulate in vegetable oil during cultivation, processing and storage. In this article, the content of the concentration of heavy metal ions in vegetable oils of Kazakhstan production is studied: sunflower, rapeseed, safflower and linseed oil. Heavy metals: arsenic, cadmium, lead and nickel, were determined in three repetitions by the method of flame atomic absorption. Analysis of vegetable oil samples revealed that the largest lead contamination (Pb) was determined to be 0.065 mg/kg in linseed oil. The content of cadmium (Cd) in the largest amount of 0.009 mg/kg was found in safflower oil. Arsenic (As) content was determined in rapeseed and safflower oils at 0.003 mg/kg, and arsenic (As) was not detected in linseed and sunflower oil. The nickel (Ni) content in the largest amount of 0.433 mg/kg was in linseed oil. The heavy metal contents in the test samples complied with the requirements of regulatory documents for vegetable oils. An assessment of the health risk of vegetable oils with a daily consumption of 36 g per day shows that all samples of vegetable oils produced in Kazakhstan are safe for consumption. But further monitoring is needed, since all these metals are toxic and their harmful effects become apparent only after several years of exposure.
Keywords: Kazakhstan, oil, safety, toxic metals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756166 Preparation of Sorbent Materials for the Removal of Hardness and Organic Pollutants from Water and Wastewater
Authors: Thanaa Abdel Moghny, Mohamed Keshawy, Mahmoud Fathy, Abdul-Raheim M. Abdul-Raheim, Khalid I. Kabel, Ahmed F. El-Kafrawy, Mahmoud Ahmed Mousa, Ahmed E. Awadallah
Abstract:
Ecological pollution is of great concern for human health and the environment. Numerous organic and inorganic pollutants usually discharged into the water caused carcinogenic or toxic effect for human and different life form. In this respect, this work aims to treat water contaminated by organic and inorganic waste using sorbent based on polystyrene. Therefore, two different series of adsorbent material were prepared; the first one included the preparation of polymeric sorbent from the reaction of styrene acrylate ester and alkyl acrylate. The second series involved syntheses of composite ion exchange resins of waste polystyrene and amorphous carbon thin film (WPS/ACTF) by solvent evaporation using micro emulsion polymerization. The produced ACTF/WPS nanocomposite was sulfonated to produce cation exchange resins ACTF/WPSS nanocomposite. The sorbents of the first series were characterized using FTIR, 1H NMR, and gel permeation chromatography. The thermal properties of the cross-linked sorbents were investigated using thermogravimetric analysis, and the morphology was characterized by scanning electron microscope (SEM). The removal of organic pollutant was determined through absorption tests in a various organic solvent. The chemical and crystalline structure of nanocomposite of second series has been proven by studies of FTIR spectrum, X-rays, thermal analysis, SEM and TEM analysis to study morphology of resins and ACTF that assembled with polystyrene chain. It is found that the composite resins ACTF/WPSS are thermally stable and show higher chemical stability than ion exchange WPSS resins. The composite resin was evaluated for calcium hardness removal. The result is evident that the ACTF/WPSS composite has more prominent inorganic pollutant removal than WPSS resin. So, we recommend the using of nanocomposite resin as new potential applications for water treatment process.
Keywords: Nanocomposite, sorbent materials, waste water, waste polystyrene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407165 A Study of RSCMAC Enhanced GPS Dynamic Positioning
Authors: Ching-Tsan Chiang, Sheng-Jie Yang, Jing-Kai Huang
Abstract:
The purpose of this research is to develop and apply the RSCMAC to enhance the dynamic accuracy of Global Positioning System (GPS). GPS devices provide services of accurate positioning, speed detection and highly precise time standard for over 98% area on the earth. The overall operation of Global Positioning System includes 24 GPS satellites in space; signal transmission that includes 2 frequency carrier waves (Link 1 and Link 2) and 2 sets random telegraphic codes (C/A code and P code), on-earth monitoring stations or client GPS receivers. Only 4 satellites utilization, the client position and its elevation can be detected rapidly. The more receivable satellites, the more accurate position can be decoded. Currently, the standard positioning accuracy of the simplified GPS receiver is greatly increased, but due to affected by the error of satellite clock, the troposphere delay and the ionosphere delay, current measurement accuracy is in the level of 5~15m. In increasing the dynamic GPS positioning accuracy, most researchers mainly use inertial navigation system (INS) and installation of other sensors or maps for the assistance. This research utilizes the RSCMAC advantages of fast learning, learning convergence assurance, solving capability of time-related dynamic system problems with the static positioning calibration structure to improve and increase the GPS dynamic accuracy. The increasing of GPS dynamic positioning accuracy can be achieved by using RSCMAC system with GPS receivers collecting dynamic error data for the error prediction and follows by using the predicted error to correct the GPS dynamic positioning data. The ultimate purpose of this research is to improve the dynamic positioning error of cheap GPS receivers and the economic benefits will be enhanced while the accuracy is increased.Keywords: Dynamic Error, GPS, Prediction, RSCMAC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685164 Sustainable Intensification of Agriculture in Victoria’s Food Bowl: Optimizing Productivity with the use of Decision-Support Tools
Authors: M. Johnson, R. Faggian, V. Sposito
Abstract:
A participatory and engaged approach is key in connecting agricultural managers to sustainable agricultural systems to support and optimize production in Victoria’s food bowl. A sustainable intensification (SI) approach is well documented globally, but participation rates amongst Victorian farmers is fragmentary, and key outcomes and implementation strategies are poorly understood. Improvement in decision-support management tools and a greater understanding of the productivity gains available upon implementation of SI is necessary. This paper reviews the current understanding and uptake of SI practices amongst farmers in one of Victoria’s premier food producing regions, the Goulburn Broken; and it spatially analyses the potential for this region to adapt to climate change and optimize food production. A Geographical Information Systems (GIS) approach is taken to develop an interactive decision-support tool that can be accessible to on-ground agricultural managers. The tool encompasses multiple criteria analysis (MCA) that identifies factors during the construction phase of the tool, using expert witnesses and regional knowledge, framed within an Analytical Hierarchy Process. Given the complexities of the interrelations between each of the key outcomes, this participatory approach, in which local realities and factors inform the key outcomes and help to strategies for a particular region, results in a robust strategy for sustainably intensifying production in key food producing regions. The creation of an interactive, locally embedded, decision-support management and education tool can help to close the gap between farmer knowledge and production, increase on-farm adoption of sustainable farming strategies and techniques, and optimize farm productivity.
Keywords: Agriculture, decision-support management tools, GIS, sustainable intensification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849163 University Students Sport’s Activities Assessment in Harsh Weather Conditions
Authors: Ammar S. M. Moohialdin, Bambang T. Suhariadi, Mohsin Siddiqui
Abstract:
This paper addresses the application of physiological status monitoring (PSM) for assessing the impact of harsh weather conditions on sports activities in universities in Saudi Arabia. Real sports measurement was conducted during sports activities such that the physiological status (HR and BR) of five students were continuously monitored by using Zephyr BioHarnessTM 3.0 sensors in order to identify the physiological bonds and zones. These bonds and zones were employed as indicators of the associated physiological risks of the performed sports activities. Furthermore, a short yes/no questionnaire was applied to collect information on participants’ health conditions and opinions of the applied PSM sensors. The results show the absence of a warning system as a protective aid for the hazardous levels of extremely hot and humid weather conditions that may cause dangerous and fatal circumstances. The applied formulas for estimating maximum HR provides accurate estimations for Maximum Heart Rate (HRmax). The physiological results reveal that the performed activities by the participants are considered the highest category (90–100%) in terms of activity intensity. This category is associated with higher HR, BR and physiological risks including losing the ability to control human body behaviors. Therefore, there is a need for immediate intervention actions to reduce the intensity of the performed activities to safer zones. The outcomes of this study assist the safety improvement of sports activities inside universities and athletes performing their sports activities. To the best of our knowledge, this is the first paper to represent a special case of the application of PSM technology for assessing sports activities in universities considering the impacts of harsh weather conditions on students’ health and safety.
Keywords: PSM, heart rate, HR, breathing rate, BR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056