Socio-Economic Influences on Soilless Agriculture
Authors: G. V. Byrd, B. B. Ghaley, E. Hayashi
Abstract:
In urban farming, research and innovation are taking place at an unprecedented pace, and soilless growing technologies are emerging at different rates motivated by different objectives in various parts of the world. Local food production is ultimately a main objective everywhere, but adoption rates and expressions vary with socio-economic drivers. Herein, the status of hydroponics and aquaponics is summarized for four countries with diverse socio-economic settings: Europe (Denmark), Asia (Japan and Nepal) and North America (US). In Denmark, with a strong environmental ethic, soilless growing is increasing in urban agriculture because it is considered environmentally friendly. In Japan, soil-based farming is being replaced with commercial plant factories using advanced technology such as complete environmental control and computer monitoring. In Nepal, where rapid loss of agricultural land is occurring near cities, dozens of hydroponics and aquaponics systems have been built in the past decade, particularly in “non-traditional” sites such as roof tops to supplement family food. In the US, where there is also strong interest in locally grown fresh food, backyard and commercial systems have proliferated. Nevertheless, soilless growing is still in the research and development and early adopter stages, and the broad contribution of hydroponics and aquaponics to food security is yet to be fully determined. Nevertheless, current adoption of these technologies in diverse environments in different socio-economic settings highlights the potential contribution to food security with social and environmental benefits which contribute to several Sustainable Development Goals.
Keywords: Aquaponics, hydroponics, soilless agriculture, urban agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222References:
[1] United Nations Food Systems Summit 2021 Available online: https://www.un.org/en/food-systems-summit (accessed on 22 January 2022).
[2] United Nations Sustainable Development Goals. Goal 2. Zero Hunger Available online: https://www.un.org/sustainabedevelopment/hunger/ (accessed on 20 January 2022).
[3] Committee on World Food Security Urbanization, Rural Transformation and Implications for Food Security and Nutrition: Key Areas for Policy Attention and Possible Roles for CFS. In Proceedings of the Making a Difference in Food Security and Nutrition; Committee on World Food Security: Rome, October 17, 2016; pp. 1–18.
[4] FAO Food and Agriculture Organization of the United Nations The Future of Food and Agriculture: Trends and Challenges.; Food and Agriculture Organization: Rome, 2017; ISBN 9789251095515.
[5] Ramankutty, N.; Mehrabi, Z.; Waha, K.; Jarvis, L.; Kremen, C.; Herrero, M.; Rieseberg, L.H. Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security. Annual Review of Plant Biology 2018, 69, 789–815.
[6] Lovatelli, A.; Stankus, A. Report of the FAO Technical Workshop on Advancing Aquaponics: An Efficient Use of Limited Resources. FAO Fisheries and Aquaculture Report No. 1133 2016, 1–71.
[7] D’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future Urban Land Expansion and Implications for Global Croplands. Proceedings of the National Academy of Sciences of the United States of America 2017, 114, 8939–8944, doi:10.1073/pnas.1606036114.
[8] Benke, K.; Tomkins, B. Future Food-Production Systems: Vertical Farming and Controlled-Environment Agriculture. Sustainability: Science, Practice, and Policy 2017, 13, 13–26, doi:10.1080/15487733.2017.1394054.
[9] Adams, R.; Hurd, B.; Lenhart, S.; Leary, N. Effects of Climate Change on Agriculture. Climate Research 1998, 11, 19–30.
[10] Kulshreshtha, S.; Wheaton, E. Sustainable Agriculture and Climate Change; MDPI AG - Multidisciplinary Digital Publishing Institute, 2018; ISBN 9783038427254.
[11] Arora, N.K. Impact of Climate Change on Agriculture Production, and Its Sustainable Solutions. Environmental Sustainability 2019, 2, 95–96, doi:10.1007/s42398-019-00078-w.
[12] Sustainable Development Goals Available online: https://www.fao.org/sustainable-development-goals/goals/goal-2/en/ (accessed on 22 January 2022).
[13] Dias, J.S. Nutritional Quality and Health Benefits of Vegetables: A Review. Food and Nutrition Sciences 2012, 03, 1354–1374, doi:10.4236/fns.2012.310179.
[14] Aires, A. Hydroponic Production Systems: Impact on Nutritional Status and Bioactive Compounds of Fresh Vegetables. In Vegetables - Importance of Quality Vegetables to Human Health; Asaduzziman, M., Asao, T., Eds.; InTechOpen, 2018; pp. 2–13.
[15] Ülger, T.G.; Songur, A.N.; Çırak, O.; Çakıroğlu, F.P. Role of Vegetables in Human Nutrition and Disease Prevention. In Vegetables - Importance of Quality Vegetables to Human Health; InTech, 2018.
[16] Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Advances in Nutrition 2012, 3, 506–516, doi:10.3945/an.112.002154.
[17] Yahia, E.M.; García-Solís, P.; Maldonado Celis, M.E. Contribution of Fruits and Vegetables to Human Nutrition and Health. Postharvest Physiology and Biochemistry of Fruits and Vegetables 2019, 19–45, doi:10.1016/B978-0-12-813278-4.00002-6.
[18] Despommier, D. The Vertical Farm Feeding the World in the 21st Century; St. Martin’s Press: New York, 2010.
[19] Birkby, J. Vertical Farming. ATTRA Sustainable Agriculture 2016, IP516, 1–12.
[20] Beacham, A.M.; Vickers, L.H.; Monaghan, J.M. Vertical Farming: A Summary of Approaches to Growing Skywards. Journal of Horticultural Science and Biotechnology 2019, 94, 277–283.
[21] Butturini, M.; Marcelis, L.F.M. Vertical Farming in Europe: Present Status and Outlook. In Plant Factory (Second Edition): An Indoor Vertical Farming System for Efficient Quality Food Production; Kozai, T., Nui, G., Takagaki, M., Eds.; Elsevier Inc., 2020; pp. 77–91 ISBN 9780128166918.
[22] Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; 2016.
[23] Yanes, A.R.; Martinez, P.; Ahmad, R. Towards Automated Aquaponics: A Review on Monitoring, IoT, and Smart Systems. Journal of Cleaner Production 2020, 263.
[24] Cohen, A.R.; Chen, G.; Berger, E.M.; Warrier, S.; Lan, G.; Grubert, E.; Dellaert, F.; Chen, Y. Dynamically Controlled Environment Agriculture: Integrating Machine Learning and Mechanistic and Physiological Models for Sustainable Food Cultivation. ACS ES&T Engineering 2021, doi:10.1021/acsestengg.1c00269.
[25] Ragaveena, S.; Shirly, E.; Surendran, U. Smart Controlled Environment Agriculture Methods: A Holistic Review. Reviews in Environmental Science and Bio/technology 2021, 20, 887–913, doi:10.1007/s11157-021-09591.
[26] Karimanzira, D.; Rauschenbach, T. Enhancing Aquaponics Management with IoT-Based Predictive Analytics for Efficient Information Utilization. Information Processing in Agriculture 2019, 6, 375–385, doi:10.1016/j.inpa.2018.12.003.
[27] Denzer A; Wang, L.; Thomas, Y.; McMorrow, G. Greenhouse Design with Waste Heat: Principles and Practices. AEI 2017, 2017, 440–455.
[28] Weidner, T.; Yang, A. The Potential of Urban Agriculture in Combination with Organic Waste Valorization: Assessment of Resource Flows and Emissions for Two European Cities. Journal of Cleaner Production 2020, 244, doi:10.1016/j.jclepro.2019.118490.
[29] Raviv, M.; Lieth, J.H.; Bar-Tal, A. Soilless Culture Theory and Practice Second Edition.
[30] Love, D.C.; Fry, J.P.; Li, X.; Hill, E.S.; Genello, L.; Semmens, K.; Thompson, R.E. Commercial Aquaponics Production and Profitability: Findings from an International Survey. Aquaculture 2015, 435, 67–74, doi:10.1016/j.aquaculture.2014.09.023.
[31] dos Santos, M.J.P.L. Smart Cities and Urban Areas—Aquaponics as Innovative Urban Agriculture. Urban Forestry and Urban Greening 2016, 20, 402–406, doi:10.1016/j.ufug.2016.10.004.
[32] Savvas, D.; Gianquinto, G.; Tuzel, Y.; Gruda, N. Soilless Culture. In Good Agricultural Practices for Greenhouse Plant Production and Protection; FAO Food and Agriculture Organization of the United Nations: Rome, 2013; pp. 303–354 ISBN 9789251076491.
[33] Putra, P.A.; Yuliando, H. Soilless Culture System to Support Water Use Efficiency and Product Quality: A Review. Agriculture and Agricultural Science Procedia 2015, 3, 283–288, doi:10.1016/j.aaspro.2015.01.054.
[34] Chatterjee, A.; Debnath, S.; Pal, H. Implication of Urban Agriculture and Vertical Farming for Future Sustainability. In Urban Horticulture - Necessity of the Future; Solankey, S., Akhtar, S., Maldonado, A., Rodriguez-Fuertes, H., Cointreras, J., Reyes, J., Eds.; IntechOpen, 2020; pp. 157–167.
[35] Dsouza, A.; Price, G.W.; Dixon, M.; Graham, T. A Conceptual Framework for Incorporation of Composting in Closed-Loop Urban Controlled Environment Agriculture. Sustainability 2021, 13, 1–28.
[36] de Wever, V. Thinking Urban and Peri-Urban Agriculture. Aquaponics Association Website.
[37] Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; Jijakli, H.; Thorarinsdottir, R. Challenges of Sustainable and Commercial Aquaponics. Sustainability (Switzerland) 2015, 7, 4199–4224, doi:10.3390/su7044199.
[38] Silva, L.; Gasca-Leyva, E.; Escalante, E.; Fitzsimmons, K.M.; Lozano, D.V. Evaluation of Biomass Yield and Water Treatment in Two Aquaponic Systems Using the Dynamic Root Floating Technique (DRF). Sustainability (Switzerland) 2015, 7, 15384–15399, doi:10.3390/su71115384.
[39] Joyce, A.; Goddek, S.; Kotzen, B.; Wuertz, S. Aquaponics: Closing the Cycle on Limited Water, Land and Nutrient Resources. In Aquaponic Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G., Eds.; Springer: Chem, Switzerland, 2019; pp. 19–34.
[40] Diver, S. Aquaponics-Integration of Hydroponics with Aquaculture. NCAT 2006, 1–28.
[41] Hambrey, J.; Evans, S.; Pantanella, E. The Relevance of Aquaponics to the New Zealand Aid Programme, Particularly in the Pacific; 2013;
[42] Love, D.C.; Fry, J.P.; Genello, L.; Hill, E.S.; Frederick, J.A.; Li, X.; Semmens, K. An International Survey of Aquaponics Practitioners. PLoS ONE 2014, 9, e102662, doi:10.1371/journal.pone.0102662.
[43] Recirculating Aquaculture; Timmons, M., Eberling, J., Eds.; Third.; Ithaca Publishing Company: Ithaca, 2013.
[44] Resh, H. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower; Resh, H., Ed.; Seventh.; CRC Press, 2013; ISBN 13.978-1-4398-7869-9.
[45] McMurtry, M.; Nelson, P.; Sanders, D.; Hodges, L. Sand Culture of Vegetables Using Aquaculture Effluents. Applied Agricultural Research 1990, 5, 280–284.
[46] Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems: Aquaponics-Integrating Fish and Plant Culture. SRAC-454 2006, 1–16.
[47] Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-Scale Aquaponic Food Production. Integrated Fish and Plant Farming. FAO Fisheries and Agriculture Technical Paper 2014.
[48] Lennard, W.; Goddek, S. Aquaponics: The Basics. In Aquaponics Food Production Systems; Springer International Publishing, 2019; pp. 113–143.
[49] Nichols, M.; Savidov, N. Aquaponics: A Nutrient and Water Efficient Production System. Acta Horticulturae 2012, 947, 129–132.
[50] Sardare, M.D.; Admane, S. v A Review of Plant without Soil-Hydroponics. IJRET: International Journal of Research in Engineering and Technology 2013, 2, 941–946.
[51] Rakocy, J.; Eberling, J. Aquaponics: Integrating Fish and Plant Culture. In Recirculating Aquaculture; Timmons, M., Eberling, J., Eds.; Ithaca Publishing Co. LLC: Ithaca, 2013; pp. 663–710 ISBN 13 978-0971264656.
[52] Lennard, W. Commercial Aquaponics Systems: Integrating Recirculating Fish Culture with Hydroponic Plant Production; Wilson Lennard, 2017; ISBN 1642048372, 9781642048377.
[53] Goddek, S.; Joyce, A.; Kotzen, B.; Burnell Editors, G.M. Aquaponics Food Production Systems Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G., Eds.; Springer: Cham, Switzerland, 2019; ISBN ISBN 978-3-030-15942-9.
[54] Maucieri, C.; Nicoletto, C.; Os, E. van; Anseeuw, D.; Havermaet, R. van; Junge, R. Hydroponic Technologies. In Aquaponics Food Production Systems; Springer International Publishing, 2019; pp. 77–110.
[55] Palm, H.W.; Knaus, U.; Appelbaum, S.; Strauch, S.M.; Kotzen, B. Coupled Aquaponics Systems. In Aquaponics Food Production Systems; Goddek S, Joyce, A., Kotzen, B., Burnell, G., Eds.; Springer International Publishing, 2019; pp. 163–199.
[56] Love, D.; Genello, L.; Li, X.; Thompson, R.; Fry, J. Production and Consumption of Homegrown Produce and Fish by Noncommercial Aquaponics Gardeners. Journal of Agriculture, Food Systems, and Community Development 2015, 6, 161–173, doi:10.5304/jafscd.2015.061.013.
[57] Proksch, G.; Ianchenko, A.; Kotzen, B. Aquaponics in the Built Environment. In Aquaponics Food Production Systems; Springer International Publishing, 2019; pp. 523–558.
[58] Konig, B.; Junge, R.; Bittsanszky, A.; Villarroel, M.; Komives, T. On the Sustainability of Aquaponics. Ecocycles 2016, 2, 26–32, doi:10.19040/ecocycles.v2i1.50.
[59] Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Haїssam Jijakli, M.; Kotzen, B. Towards Commercial Aquaponics: A Review of Systems, Designs, Scales and Nomenclature. Aquaculture International 2018, 26, 813–842.
[60] Turnsek, M.; Morgenstern, R.; Schroter, R.; Mergenthaler, M.; Huttel, S.; Leyer, M. Commercial Aquaponics: A Long Road Ahead. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G., Eds.; Springer: Cham, 2019; pp. 453–486.
[61] Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an Advanced Technique for Vegetable Production: An Overview. Journal of Soil and Water Conservation 2018, 17, 364, doi:10.5958/2455-7145.2018.00056.5.
[62] Savvas, D. Hydroponics: A Modern Technology Supporting the Application of Integrated Crop Management in Greenhouse. Food, Agriculture, and Environment 2003, 1, 80–86.
[63] Nguyen, N.T.; Mcinturf, S.A.; Mendoza-Cózatl, D.G. Hydropoics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements. Journal of Visualized Experiments 2016, e54317, doi:10.3791/54317.
[64] van Os, E. Dutch Developments in Soilless Culture. Outlook on Agriculture 1982, 11, 165–171, doi:10.1177/003072708201100404.
[65] Voogt, W.; Bar-Yosef, B. Water and Nutrient Management and Crops Response to Nutrient Solution Recycling in Soilless Growing Systems in Greenhouses. In Soilless Culture Theory and Practice; Reviv, M., Lieth, J., Bar-Tal, A., Eds.; Elsevier, 2019; pp. 425–508 ISBN 9780444636966.
[66] Lennard, W. Aquaponics Integration of Murray Cod (Maccullochella peelii peelii) Aquaculture and Lettuce (Lactuca sativa) Hydroponics, 2005.
[67] Al shrouf, A. Hydroponics, Aeroponic and Aquaponic as Compared with Conventional Farming. American Scientific Research Journal for Engineering, Technology, and Sciences 2017, 27, 247–255.
[68] Kawser, R.; Sheikh, B.; Rahman, M.; Hossain, A.; Hossain, M.; Fahamida Yeasmin, M. Optimizing Planting Density of Lettuce (Lactuca sativa) with Tilapia (Oreochromis niloticus). American Journal of Agricultural Science, Engineering and Technology 2016, 3, 1–11.
[69] Maboko, M.M.; du Plooy, C.P. Effect of Plant Spacing on Growth and Yield of Lettuce (Lactuca sativa L.) in a Soilless Production System. South African Journal of Plant and Soil 2009, 26, 195–198, doi:10.1080/02571862.2009.10639954.
[70] Bailey, D.S.; Ferrarezi, R.S. Valuation of Vegetable Crops Produced in the UVI Commercial Aquaponic System. Aquaculture Reports 2017, 7, 77–82, doi:10.1016/j.aqrep.2017.06.002.
[71] Grillas, S.; Lucas, M.; Bardopoulou, M.; Saaopoulos, E.; Voulgari, M. Perlite Based Soilless Culture Systems: Current Commercial Applications and Prospets. Acta Hortic 2007, 548, 105–114, doi:10.17660/ActaHortic.2001.548.10.
[72] Rakocy, J.E.; Bailey, D.S.; Shultz, R.C.; Thoman, E.S. Update on Tilapia and Vegetable Production in the UVI Aquaponic System. In Proceedings of the New Dimensions on Farmed Tilapia: Proceedings of the Sixth International Symposium on Tilapia Aquaculture; Boliver, R., Ed.; Manila, Phillippines, 2004; pp. 676–690.
[73] Salam, M.A.; Prodhan, M.Y.; Sayem, S.M.; Islam, M.A. Comparative Growth of Taro Plant in Aquaponics vs Other Systems; 2014; Vol. 7.
[74] de Souza, P.F.; Borghezan, M.; Zappelini, J.; de Carvalho, L.R.; Ree, J.; Barcelos-Oliveira, J.L.; Pescador, R. Physiological Differences of ‘Crocantela’ Lettuce Cultivated in Conventional and Hydroponic Systems. Horticultura Brasileira 2019, 37, 101–105, doi:10.1590/s0102-053620190116.
[75] Timmons, M.; Eberling, J. Culture Units. In Recirculating Aquaculture; Timmons, M., Eberling, J., Eds.; Ithaca Publishing Company: Ithaca, 2013; pp. 93–138.
[76] FAO Food and Agriculture Organization of the United Nations Management of the Aquaponic Systems; 2015;
[77] Thorarinsdottir, R. Aquaponics Guildlines 2015.; Reykjavik, Iceland, 2015.
[78] Winterbourne, J. Hydroponics Indoor Horticulture; Pukka Press Ltd: London, 2005.
[79] Miličić, V.; Thorarinsdottir, R.; dos Santos, M.; Hančič, M.T. Commercial Aquaponics Approaching the European Market: To Consumers’ Perceptions of Aquaponics Products in Europe. Water (Switzerland) 2017, 9, doi:10.3390/w9020080.
[80] Villarroel, M.; Junge, R.; Komives, T.; König, B.; Plaza, I.; Bittsánszky, A.; Joly, A. Survey of Aquaponics in Europe. Water (Switzerland) 2016, 8, doi:10.3390/w8100468.
[81] The World Bank Urban Population Growth (Annual %) 2018.
[82] The Danish Agrifish Agency Denmark’s Report for the State of the World’s Biodiversity for Food and Agriculture the State of the World’s Biodiversity for Food and Agriculture in Denmark; 2016;
[83] Andersen, M.S.; Liefferink, D. European Environmental Policy: The Pioneers; Andersen, M., Liefferink, D., Eds.; Manchester University Press, 1997.
[84] The Danish Government A Green and Sustainable World; 2020;
[85] Berardi, U.; Ghaffarian Hoseini, A.; Ghaffarian Hoseini, A. State-of-the-Art Analysis of the Environmental Benefits of Green Roofs. Applied Energy 2014, 115, 411–428.
[86] Dalgaard, T.; Hansen, B.; Hasler, B.; Hertel, O.; Hutchings, N.J.; Jacobsen, B.H.; Jensen, L.S.; Kronvang, B.; Olesen, J.E.; Schjørring, J.K.; et al. Policies for Agricultural Nitrogen Management-Trends, Challenges and Prospects for Improved Efficiency in Denmark. Environmental Research Letters 2014, 9, doi:10.1088/1748-9326/9/11/115002.
[87] Andersen, B.; Sørensen, J. Agriculture in Denmark 2015.
[88] Hoffmann, C.C.; Zak, D.; Kronvang, B.; Kjaergaard, C.; Carstensen, M.V.; Audet, J. An Overview of Nutrient Transport Mitigation Measures for Improvement of Water Quality in Denmark. Ecological Engineering 2020, 155, 105863, doi:10.1016/J.ECOLENG.2020.105863.
[89] CBI Ministry of Foreign Affairs Which Trends Offer Opportunities or Pose Threats on the European Fresh Fruit and Vegetables Market? 2021.
[90] OECD Organization for Economic Co-operation and Development OECD Environmental Performance Reviews: Denmark 2019 Available online: https://www.oecd.org/greengrowth/oecd-environmental-performance-reviews-denmark-2019-1eeec492-en.htm (accessed on 19 January 2022).
[91] Liverino, G. Wonderful Copenhagen. Copenhagen January 4, 2021.
[92] Christensen, L.S. Some Structural Aspects of Food Production, Food Retail Markets and Procurement in Denmark-Implications for National Strategies of the REFRAME Approach; 2019.
[93] Denmark-Agriculture Sector Available online: https://www.export.gov/apex/article2?id=Denmark-Agricultural-Sector (accessed on 22 January 2022).
[94] Andersen, A. Danish ornamental horticulture in greenhouses and the quest for new crops. Acta Horticulturae 1989, 252, 13–52, doi:10.17660/ActaHortic.1989.252.1.
[95] Gadtke, L. Sustainable Horticultural Production in Denmark, Saint Paul, 2010.
[96] Howard, D.A.; Ma, Z.; Veje, C.; Clausen, A.; Aaslyng, J.M.; Jørgensen, B.N. Greenhouse Industry 4.0 – Digital Twin Technology for Commercial Greenhouses. Energy Informatics 2021, 4, 37, doi:10.1186/s42162-021-00161-9.
[97] Gregg, J.; Jürgens, J. The Emerging Regulatory Landscape for Aquaponics in Scandinavia-a Case Study for the Transition to a Circular Economy. 14th Nordi Environmental Social Sciences Conference 2019, 1–12.
[98] Hoevenaars, K.; Junge, R.; Bardocz, T.; Leskovec, M. EU Policies: New Opportunities for Aquaponics. Ecocycles 2018, 4, 10–15, doi:10.19040/ecocycles.v4i1.87.
[99] Skov, C.; Berg, S.; Eigaard, O.; Jessen, T.; Skov, P. Danish Fisheries and Aquaculture: Past, Present, and Future. Fisheries 2019, 45, 33–41, doi:10.1002/fsh.10330.
[100] Rasmus; Katie Can We Make Hydroponics Popular in Demark? Available online: https://sustainableraskat.wordpress.com/2016/05/02/the-definitive-plan-for-making-hydroponics-popular-in-denmark/ (accessed on 19 January 2022).
[101] We Will Do That Obvious to Eat Sustainable Available online: https://www.nordicharvest.com/ (accessed on 22 January 2022).
[102] Peters, A. 2020 This Vertical Farm in Denmark Will Grow 1000 Tons of Local Greens a Year Available online: https://www.agritecture.com/blog/2020/12/14/this-vertical-farm-in-denmark-will-grow-1000-tons-of-local-greens-a-year (accessed on 19 January 2022).
[103] Building and Operating Your Vertical Farm Available online: https://nextfood.co/ (accessed on 22 January 2022).
[104] Cultivated Locally Available online: https://nabofarm.com/ (accessed on 22 January 2022).
[105] Micro-Greens Denmark Available online: https://micro-greens.dk/ (accessed on 22 January 2022).
[106] Aquaponic Food Production Available online: https://www.igff.dk/ (accessed on 22 January 2022).
[107] Skar, S.; Liltved, H.; Kledal, N.; Høgberget, R.; Björnsdottir, R.; Homme, J.; Oddsson, S.; Paulsen, H.; Drengstig, A.; Savidov, N.; et al. New Innovations for Sustainable Aquaculture in the Nordic Countries. Nordic Innovations Publication 2015, 6, 1–108.
[108] Tsubota, K. Urban Agriculture in Asia: Lessons from Japanese Experience.
[109] Sioen, G.B.; Terada, T.; Sekiyama, M.; Yokohari, M. Resilience with Mixed Agricultural and Urban Land Uses in Tokyo, Japan. Sustainability (Switzerland) 2018, 10, doi:10.3390/su10020435.
[110] Harada, K.; Hino, K.; Iida, A.; Yamazaki, T.; Usui, H.; Asami, Y.; Yokohari, M. How Does Urban Farming Benefit Participants’ Health? A Case Study of Allotments and Experience Farms in Tokyo. International Journal of Environmental Research and Public Health 2021, 18, 1–13, doi:10.3390/ijerph18020542.
[111] Hayes, J. Agriculture in Japan Available online: https://factsanddetails.com/japan/cat24/sub159/item941.html (accessed on 16 January 2022).
[112] Cao, W.; Kimiami, L.; Kiminami A Analysis on the Attitude of Employed Japanese Farmers from the Viewpoint of Human Resource Management. J Rural Econ 2012, 53–60.
[113] Westhead, R. Japan Embraces the Grow-Up. Toronto Star 2014.
[114] Hayashi, E. Current Status of Commercial Plant Factories with LED Lighting. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E., Eds.; Springer, 2016; pp. 289–294.
[115] Yamaguchi, N.; Taniyama, I.; Kimura, T.; Yoshioka, K.; Saito, M. Contamination of Agricultural Products and Soils with Radiocesium Derived from the Accident at TEPCO Fukushima Daiichi Nuclear Power Station: Monitoring, Case Studies and Countermeasures. Soil Science and Plant Nutrition 2016, 62, 303–314.
[116] Asao, T.; Asaduzzaman, M.; Mondal, F. Horticultural Research in Japan. Production of Vegetables and Ornamentals in Hydroponics, Constraints and Control Measures; Horticulture Science 2014, 28, 167-178.
[117] Sawyer, T. Aquaponics in Japan. The Aquaponics Source 2012.
[118] Takeuchi, T.; Endo, M. Aquaponics. In Applications of recirculating aquaculture systems in Japan; Takeuchi, T., Ed.; Springer, 2017; pp. 257–266.
[119] Katano, O.; Hakoyama, H.; Matsuzaki, S. Japanese Inland Fisheries and Aquaculture: Status and Trends. In Freshwater Fish Ecology; Craig, J., Ed.; Wiley Blackwell, 2015; pp. 231–240.
[120] Brown-Paul, C. Robo Farming. Practical Hydroponics and Greenhouses 2016, 165, 17–22.
[121] Kajiura, I. Biotechnology Contributes to Agriculture and Environment in Japan. In Proceedings of the Fifth Conference, Science Council of Asia; 2005; pp. 1–8.
[122] Lee, C.; Jhang, J. System Design for Internet of Things Assisted Urban Aquaponics Farming. In Proceedings of the IEEE 8th Global Conference on Consumer Electronics (GCCE); Osaka, 2019; pp. 986–987.
[123] Gnanasagar, V.; Vivek, M. Design and Implementation of a Controller for a Recirculating Aquaponics System Using IoT. International Research Journal of Engineering and Technology (IRJET) 2020, 7, 6347–6351.
[124] Kozai, T.; Fujiwara, K. Moving toward Self-Learning Closed Plant Production Systems. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E., Eds.; Springer, 2016; pp. 445–448 ISBN 978-0-12-801775-3.
[125] Boekhout, R. Bringing Aquaponics Closer to Japanese Society.
[126] Yamane, K.; Kimura, Y.; Takahashi, K.; Maeda, I.; Iigo, M.; Ikeguchi, A.; Kim, H.J. The Growth of Leaf Lettuce and Bacterial Communities in a Closed Aquaponics System with Catfish. Horticulturae 2021, 7, doi:10.3390/horticulturae7080222.
[127] Shonan Akponi Farm Available online: https://aquaponics.co.jp/shonan-aquponi-farm/ (accessed on 22 January 2022).
[128] Yano, Y.; Nakamura, T.; Maruyama, A. Consumer Perceptions and Understanding of Vegetables Produced at Plant Factories with Artificial Lighting. In LED lighting for urban agriculture; Kozai, T., Fujiwara, K., Runkle, E., Eds.; Springer, Singapore: Singapore, 2016; pp. 347–363.
[129] The World Bank Urban Population-Nepal Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=NP (accessed on 22 January 2022).
[130] Bakrania, S. Urbanisation and Urban Growth in Nepal Available online: www.gsdrc.org.
[131] Thapa, R.B.; Murayama, Y.; Ale, S. City Profile Kathmandu. Cities 2008, 25, 45–57, doi:10.1016/j.cities.2007.10.001.
[132] Thapa, R.; Murayama, Y. Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches. Remote Sensing 2009, 1, 534–556, doi:10.3390/rs1030534.
[133] Thapa, S.; Nainabasti, A.; Bharati, S. Assessment of the Linkage of Urban Green Roofs, Nutritional Supply, and Diversity Status in Nepal. Cogent Food and Agriculture 2021, 7, doi:10.1080/23311932.2021.1911908.
[134] Holmelin, N.B. National Specialization Policy versus Farmers’ Priorities: Balancing Subsistence Farming and Cash Cropping in Nepal. Journal of Rural Studies 2021, 83, 71–80, doi:10.1016/j.jrurstud.2021.02.009.
[135] Jha, R.; Bhattarai, N.; KC, S.; Shrestha, a; Kadariya, M. Rooftop Farming: An Alternative to Conventional Farming for Urban Sustainability. Malaysian Journal of Sustainable Agriculture 2019, 3, 39–43, doi:10.26480/mjsa.01.2019.39.43.
[136] Thapa, S.; Nainabasti, A.; Acharya, S.; Rai, N.; Bhandari, R. Rooftop Gardening as A Need for Sustainable Urban Farming: A Case of Kathmandu, Nepal. International Journal of Applied Sciences and Biotechnology 2020, 8, 241–246, doi:10.3126/ijasbt.v8i2.29592.
[137] Thapa, S.; Bhandari, R.; Nainabasti, A. Survey on People’s Attitudes and Constraints of Rooftop Gardening in Dhulikhel. Ecofeminism and Climate Change 2020, 1, 89–96, doi:10.1108/efcc-04-2020-0008.
[138] Byrd, G.; Maharjan, S.; Jha, B.; Gurung, S. A Review of Soilless Agriculture in Nepal. World Applied Science Journal 2021, 39,69-83, doi: 10.5829/idosi.wasj.2021.69.83.
[139] Forecast of the Degree of Urbanization in the United States 2000-2050 Available online: https://www.statista.com/statistics/678561/urbanization-in-the-united-states/ (accessed on 22 January 2022).
[140] US Department of Agriculture Foreign Agriculture Service Fruits and Vegetables Available online: https://www.fas.usda.gov/commodities/fruits-and-vegetables (accessed on 20 January 2022).
[141] Kenner, B. U.S. Fruit Imports Grew by $8.9 Billion over the Last Decade to Meet Rising Demand Available online: https://www.ers.usda.gov/amber-waves/2020/september/us-fruit-imports-grew-by-89-billion-over-the-last-decade-to-meet-rising-demand/ (accessed on 17 January 2022).
[142] Oberholtzer, L.; Dimitri, C. Urban Agruiculture in the United States: Characteristics, Challenges, and Technical Assistance Needs 2016, 1–12.
[143] Amirthamasebi, R. The North American Urban Agriculture Experience.
[144] Dalrymple, D. Controlled Environment Agriculture: A Global Review of Greenhouse Food Production; Washington DC, 1973.
[145] Walters, K.J.; Behe, B.K.; Currey, C.J.; Lopez, R.G. Historical, Current, and Future Perspectives for Controlled Environment Hydroponic Food Crop Production in the United States. HortScience 2020, 55, 758–767, doi:10.21273/HORTSCI14901-20.
[146] Agrilyst State of Indoor Farming; 2017.
[147] IBISWorld Hydroponic Crop Farmin Industry in the US-Market Research Report Available online: https://www.ibisworld.com/united-states/market-research-reports/hydroponic-crop-farming-industry/ (accessed on 17 January 2022).
[148] North America Aquapnonics System Market Available online: https://www.marketdataforecast.com/market-reports/north-america-aquaponics-system-market (accessed on 22 January 2022).
[149] Junge, R.; Bulc, T.; Anseeuw, D.; Yildiz, H.; Milliken, S. Aquaponics as an Educational Tool. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G., Eds.; Springer Open: Cham, Switzerland, 2019; pp. 561–596 ISBN 978-3-030-15942-9.
[150] Expanding the Practice of Aquaponics through Education, Advocacy, and Connection Available online: https://aquaponicsassociation.org/ (accessed on 22 January 2022).
[151] Shamshiri, R.R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z. Advances in Greenhouse Automation and Controlled Environment Agriculture: A Transition to Plant Factories and Urban Agriculture. International Journal of Agricultural and Biological Engineering 2018, 11, 1–22, doi:10.25165/j.ijabe.20181101.3210.
[152] Rogers, E. Diffusion of Innovations; First.; The Free Press of Glencoe: New York, 1962.
[153] Beck, D.F. SANDIA REPORT Technology Development Life Cycle Processes; Albuquerque, 2013.
[154] Goddek, S.; Joyce, A.; Kotzen, B.; Dos-Santos, M. Aquaponics and Global Food Challenges. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Benz, K., Burnell, G., Eds.; Springer Open: Che, 2019; pp. 3–17.
[155] Junge, R.; König, B.; Villarroel, M.; Komives, T.; Jijakli, M.H. Strategic Points in Aquaponics. Water (Switzerland) 2017, 9.
[156] Yep, B.; Zheng, Y. Aquaponic Trends and Challenges – A Review. Journal of Cleaner Production 2019, 228, 1586–1599.
[157] Wirza, R.; Nazir, S. Urban Aquaponics Farming and Cities-a Systematic Literature Review. Rev Environ Health 2021, 36, 47–61, doi:10.1515/reveh-2020-0064.
[158] Wu, F.; Ghamkhar, R.; Ashton, W.; Hicks, A.L. Sustainable Seafood and Vegetable Production: Aquaponics as a Potential Opportunity in Urban Areas. Integrated Environmental Assessment and Management 2019, 15, 832–843.
[159] Gonnella, M.; Renna, M. The Evolution of Soilless Systems towards Ecological Sustainability in the Perspective of a Circular Economy. Is It Really the Opposite of Organic Agriculture? Agronomy 2021, 11, doi:10.3390/agronomy11050950.
[160] Viviano, F. National Geographic Magazine. September 2017.
[161] Schnitzler, W.H. Urban Hydroponics for Green and Clean Cities and for Food Security. Acta Horticulturae 2013, 1004, 13–26, doi:10.17660/ActaHortic.2013.1004.1.
[162] Greenfeld, A.; Becker, N.; Bornman, J.F.; Angel, D.L. Identifying Knowledge Levels of Aquaponics Adopters. Environmental Science and Pollution Research 2020, 27, 4536–4540, doi:10.1007/s11356-019-06758-8/Published.
[163] Joly, A.; Junge, R.; Bardocz, T. Aquaponics Business in Europe: Some Legal Obstacles and Solutions. Ecocycles 2015, 1, 3–5, doi:10.19040/ecocycles.v1i2.30.
[164] United Nations. Make the SDGS a Reality. https://sdgs.un.org/ (accessed February 13, 20226
[165] Mok, W.; Tan, Y.; Chen, W. Technology innovations for food security in Singapore: A case study of future food systems for an increasingly natural resource-scarce world. Trends in Food Science and Technology 102, 155-168. doi/10.1016/j.tifs.2020.06.013.
[166] Piechowiak, M. Countries using vertical farming. Vertical Farming Planet. Available online: https://verticalfarmingplanet.com/countries-using-vertical-farming/ (accessed on 19 August 2022).
[167] Azad, Ka.; Salam, M.; Azad, Kh. Aquaponics in Bangladesh: current status and future prospects. Journal of Bioscience and Agriculture Research 2016, 07(2), 669-677. doi 10.18801/jbar.070216.79.
[168] Khanh, N. Growing power: The Saigon aquaponics movement. Oi Vietnam. Available online: https://oivietnam.com/2015/05/growing-power-the-saigon-aquaponics-movement/#:~:text=A%20growing %20group%20of%20enthusiasts,food%20in%20your%20own%20 home.&text=the%20purpose%20of%20rooftops%20as,for%20a%20rooftop%20aquaponics%20movement (assessed on 19 August 2022).
[169] Tarigan, N.; Goddek, S.; Keesman, K. Explorative study of aquaponics systems in Indonesia. Sustainability 2021, 13, 12685. doi.org/10.3390/su132212685.
[170] Maharjan, S. Hydroponics systems in Nepal: status and nutrient solution assessment. MS thesis. Kathmandu University 2022. Dulikhel, Nepal.
[171] Rawal, S.; Thapa, S. Assessment of the status of rooftop garden: its diversity, and determinants of urban green roofs in Nepal. Hindawi Scientifica 2022, 1-13. doi.org/10.1155/2022/6744042.
[172] Bonnet, A.; Kolev, A. The middle class in emerging Asia: Champions for more inclusive societies? OECD Working Paper No. 347. Available online: www.oecd.org/dev/wp (assessed on 19 August 2022).
[173] Wayne, S.; Jordon, P. Covid-19 and the future of tourism in Asia and the Pacific. Asian Development Bank and World Tourism Association. 2022. Available online: https://www.adb.org/sites/default/files/publication/784186/covid-19-future-tourism-asia-pacific.pdf (accessed on 19 August 2022).
[174] Good Leaf Farms. Canada's largest vertical farm setting up operations in Calgary. AgriTech Tomorrow 2021. Available online: https://www.agritechtomorrow.com/story/2021/11/canadas-largest-commercial-vertical-farm-setting-up-operations-in-calgary/13336/ (assessed on August 19, 2022).
[175] Savidof, N.; Hutchings, E.; Rakocy, J. Fish and plant production in a recirculating aquaponic system: A new approach to sustainable agriculture in Canada. Acta Horticulturae 2007, 742. doi 10.17660/actahortic.2007.742.28.
[176] Nichols, M.; Savidov, N. Aquaponics: A nutrient and water efficient production system. Acta Horticulturae 2012, 947, 129-132. doi 10.17660/ActaHortic.2012.947.14.
[177] de Ande, J.; Shear, H. Potential of vertical hydroponic agriculture in Mexico. Sustainability 2017, 9, 140. doi 10.3390/su9010140.
[178] Johnson, T. Urban gardening on the rise in Mexico City. The Christian Science Monitor 2012. Available online: https://www.csmonitor.com/World/Americas/2012/1030/Urban-gardening-on-the-rise-in-Mexico-City. (Accessed on August 20, 2022).
[179] Balquiah, T.; Pandyanto, H.; Astuti, R.; Makhtar, S. Understanding how to increase hydroponic attractiveness: economic and ecological benefit. E3S Web of Conferences 2020, 211, 01015. doi.org/10.1051/e3sconf/202021101015.
[180] Greenfeld, A.; Becker, N.; Bornman, J.; dos Santos, M.; Angel, D. Consumer preferences for aquaponics: a comparative analysis of Australia and Israel. Journal of Environmental Management 2019, 257, 1, 921-934. doi 10.1016/j.jenvman.2019.109979.
[181] Joly, A.; Junge, R.; Bardocz,T. Aquaponics business in Europe: some legal obstacles and solutions. Ecocycles 2015, 1, 2, 3-5. doi 10.19040/ecocycles.v1i2.30.