Search results for: Web-Based Remote Training Program
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2189

Search results for: Web-Based Remote Training Program

359 Online Language Learning and Teaching Pedagogy: Constructivism and Beyond

Authors: Zeineb Deymi-Gheriani

Abstract:

In the last two decades, one can clearly observe a boom of interest for e-learning and web-supported programs. However, one can also notice that many of these programs focus on the accumulation and delivery of content generally as a business industry with no much concern for theoretical underpinnings. The existing research, at least in online English language teaching (ELT), has demonstrated a lack of an effective online teaching pedagogy anchored in a well-defined theoretical framework. Hence, this paper comes as an attempt to present constructivism as one of the theoretical bases for the design of an effective online language teaching pedagogy which is at the same time technologically intelligent and theoretically informed to help envision how education can best take advantage of the information and communication technology (ICT) tools. The present paper discusses the key principles underlying constructivism, its implications for online language teaching design, as well as its limitations that should be avoided in the e-learning instructional design. Although the paper is theoretical in nature, essentially based on an extensive literature survey on constructivism, it does have practical illustrations from an action research conducted by the author both as an e-tutor of English using Moodle online educational platform at the Virtual University of Tunis (VUT) from 2007 up to 2010 and as a face-to-face (F2F) English teaching practitioner in the Professional Certificate of English Language Teaching Training (PCELT) at AMIDEAST, Tunisia (April-May, 2013).

Keywords: Active learning, constructivism, experiential learning, Piaget, Vygotsky.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
358 Teaching Attentive Literature Reading in Higher Education French as a Foreign Language: A Pilot Study of a Flipped Classroom Teaching Model

Authors: Malin Isaksson

Abstract:

Teaching French as a foreign language usually implies teaching French literature, especially in higher education. Training university students in literary reading in a foreign language requires addressing several aspects at the same time: the (foreign) language, the poetic language, the aesthetic aspects of the studied works, and various interpretations of them. A pilot study sought to test a teaching model that would support students in learning to perform competent readings and short analyses of French literary works, in a rather independent manner. This shared practice paper describes the use of a flipped classroom method in two French literature courses, a campus course and an online course, and suggests that the teaching model may provide efficient tools for teaching literary reading and analysis in a foreign language. The teaching model builds on a high level of student activity and focuses on attentive reading, meta-perspectives such as theoretical concepts, individual analyses by students where said concepts are applied, and group discussions of the studied texts and of possible interpretations.

Keywords: Shared practice, flipped classroom, literature in foreign language studies, teaching literature analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
357 Intelligent Neural Network Based STLF

Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi

Abstract:

Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Keywords: Feed-forward Large Neural Network, Short-TermLoad Forecasting, Continuous Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
356 Numerical Solution of Transient Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform, by mean of the finite volume method, a numerical solution of the transient natural convection in a narrow rectangular channel between two vertical parallel Material Testing Reactor (MTR)-type fuel plates, imposed under a heat flux with a cosine shape to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not reach a specific safety limits (90 °C). For this purpose, a computer program is developed to determine the principal parameters related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor core power. Throughout the obtained results, we noticed that the core power should not reach 400 kW, to ensure a safe passive residual heat removing from the nuclear core by the upward natural convection cooling mode.

Keywords: Buoyancy force, friction force, friction factor, finite volume method, transient natural convection, thermal hydraulic analysis, vertical heated rectangular channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
355 Bridging Stress Modeling of Composite Materials Reinforced by Fibers Using Discrete Element Method

Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski

Abstract:

The problem of toughening in brittle materials reinforced by fibers is complex, involving all of the mechanical properties of fibers, matrix and the fiber/matrix interface, as well as the geometry of the fiber. Development of new numerical methods appropriate to toughening simulation and analysis is necessary. In this work, we have performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of toughening contributed by random fibers. Then with a numerical program, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers of high strength and low elasticity modulus are beneficial to toughening; (ii) fibers of relatively high elastic modulus compared to the matrix may result in substantial matrix damage due to spalling effect; (iii) employment of high-strength synthetic fibers is a good option for toughening. We expect that the combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed. The present work can guide the design of ceramic composites of high performance through the optimization of the parameters.

Keywords: Bridging stress, discrete element method, fiber reinforced composites, toughening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
354 Speaker Independent Quranic Recognizer Basedon Maximum Likelihood Linear Regression

Authors: Ehab Mourtaga, Ahmad Sharieh, Mousa Abdallah

Abstract:

An automatic speech recognition system for the formal Arabic language is needed. The Quran is the most formal spoken book in Arabic, it is spoken all over the world. In this research, an automatic speech recognizer for Quranic based speakerindependent was developed and tested. The system was developed based on the tri-phone Hidden Markov Model and Maximum Likelihood Linear Regression (MLLR). The MLLR computes a set of transformations which reduces the mismatch between an initial model set and the adaptation data. It uses the regression class tree, as well as, estimates a set of linear transformations for the mean and variance parameters of a Gaussian mixture HMM system. The 30th Chapter of the Quran, with five of the most famous readers of the Quran, was used for the training and testing of the data. The chapter includes about 2000 distinct words. The advantages of using the Quranic verses as the database in this developed recognizer are the uniqueness of the words and the high level of orderliness between verses. The level of accuracy from the tested data ranged 68 to 85%.

Keywords: Hidden Markov Model (HMM), MaximumLikelihood Linear Regression (MLLR), Quran, Regression ClassTree, Speech Recognition, Speaker-independent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
353 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: Hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
352 Local Buckling of Web-Core and Foam-Core Sandwich Panels

Authors: Ali N. Suri, Ahmad A. Al-Makhlufi

Abstract:

Sandwich construction is widely accepted as a method of construction especially in the aircraft industry. It is a type of stressed skin construction formed by bonding two thin faces to a thick core, the faces resist all of the applied edge loads and provide all or nearly all of the required rigidities, the core spaces the faces to increase cross section moment of inertia about common neutral axis and transmit shear between them provides a perfect bond between core and faces is made.

Material for face sheets can be of metal or reinforced plastics laminates, core material can be metallic cores of thin sheets forming corrugation or honeycomb, or non metallic core of Balsa wood, plastic foams, or honeycomb made of reinforced plastics.

For in plane axial loading web core and web-foam core Sandwich panels can fail by local buckling of plates forming the cross section with buckling wave length of the order of length of spacing between webs.

In this study local buckling of web core and web-foam core Sandwich panels is carried out for given materials of facing and core, and given panel overall dimension for different combinations of cross section geometries.

The Finite Strip Method is used for the analysis, and Fortran based computer program is developed and used.

Keywords: Local Buckling, Finite Strip, Sandwich panels, Web and foam core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
351 Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality

Authors: Guojian Cheng, Tianshi Liu, Jiaxin Han, Zheng Wang

Abstract:

The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen-s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author-s model: TGCS. It is ended with some testing results comparison and conclusions.

Keywords: Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
350 Numerical Simulation for a Shallow Braced Excavation of Campus Building

Authors: Sao-Jeng Chao, Wen-Cheng Chen, Wei-Humg Lu

Abstract:

In order to prevent encountering unpredictable factors, geotechnical engineers always conduct numerical analysis for braced excavation design. Simulation work in advance can predict the response of subsequent excavation and thus will be designed to increase the security coefficient of construction. The parameters that are considered include geological conditions, soil properties, soil distributions, loading types, and the analysis and design methods. National Ilan University is located on the LanYang plain, mainly deposited by clayey soil and loose sand, and thus is vulnerable to external influence displacement. National Ilan University experienced a construction of braced excavation with a complete program of monitoring excavation. This study takes advantage of a one-dimensional finite element method RIDO to simulate the excavation process. The predicted results from numerical simulation analysis are compared with the monitored results of construction to explore the differences between them. Numerical simulation analysis of the excavation process can be used to analyze retaining structures for the purpose of understanding the relationship between the displacement and supporting system. The resulting deformation and stress distribution from the braced excavation cab then be understand in advance. The problems can be prevented prior to the construction process, and thus acquire all the affected important factors during design and construction.

Keywords: Excavation, numerical simulation, rido, retaining structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
349 The Effects of Physical Activity and Serotonin on Depression, Anxiety, Body Image and Mental Health

Authors: Sh. Khoshemehry, M. E. Bahram, M. J. Pourvaghar

Abstract:

Sport has found a special place as an effective phenomenon in all societies of the contemporary world. The relationship between physical activity and exercise with different sciences has provided new fields for human study. The range of issues related to exercise and physical education is such that it requires specialized sciences and special studies. In this article, the psychological and social sections of exercise have been investigated for children and adults. It can be used for anyone in different age groups. Exercise and regular physical movements have a great impact on the mental and social health of the individual in addition to body health. It affects the individual's adaptability in society and his/her personality. Exercise affects the treatment of diseases such as depression, anxiety, stress, body image, and memory. Exercise is a safe haven for young people to achieve the optimum human development in its shelter. The effects of sensorimotor skills on mental actions and mental development are such a way that many psychologists and sports science experts believe these activities should be included in training programs in the first place. Familiarity of students and scholars with different programs and methods of sensorimotor activities not only causes their mental actions; but also increases mental health and vitality, enhances self-confidence and, therefore, mental health.

Keywords: Anxiety, mental health, physical activity, serotonin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
348 The Patterns of Unemployment and the Geography of Social Housing

Authors: Sónia Alves

Abstract:

During the last few decades in the academic field, the debate has increased on the effects of social geography on the opportunities of socioeconomic integration. On one hand, it has been discussed how the contents of the urban structure and social geography affect not only the way people interact, but also their chances of social and economic integration. On the other hand, it has also been discussed how the urban structure is also constrained and transformed by the action of social actors. Without questioning the powerful influence of structural factors, related to the logic of the production system, labor markets, education and training, the research has shown the role played by place of residence in shaping individual outcomes such as unemployment. In the context of this debate the importance of territory of residence with respect to the problem of unemployment has been highlighted. Although statistics of unemployment have already demonstrated the unequal incidence of the phenomenon in social groups, the issue of uneven territorial impact on the phenomenon at intra-urban level remains relatively unknown. The purpose of this article is to show and to interpret the spatial patterns of unemployment in the city of Porto using GIS (Geographic Information System - GIS) technology. Under this analysis the overlap of the spatial patterns of unemployment with the spatial distribution of social housing, allows the discussion of the relationship that occurs between these patterns and the reasons that might explain the relative immutability of socioeconomic problems in some neighborhoods.

Keywords: Unemployment, area effects, urban planning, Porto.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
347 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
346 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4990
345 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature

Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak

Abstract:

In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.

Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
344 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
343 Effects of Aerobic Dance on Cardiovascular Level and Body Weight among Women

Authors: Mohd Faridz Ahmad, Muhammad Amir Asyraf Rosli

Abstract:

Aerobic dance has becoming a popular mode of exercise especially among women due to its fun nature. With a catchy music background and joyful dance steps, aerobic dancers would be able to have fun while sweating out. Depending on its level of aggressiveness, aerobic may also improve and maintain cardiorespiratory fitness other than being a great tool for weight loss. This study intends to prove that aerobic dance activity can bring the same, if not better impacts on health than other types of cardiovascular exercise such as jogging and cycling. The objective of this study was to evaluate and identify the effect of six weeks aerobic dance on cardiovascular fitness and weight loss among women. This study, which was held in Seremban Fit Challenge, used a quasiexperimental design. The subjects selected include a total of 14 women (n = 14) with age (32.4 years old ± 9.1), weight (65.93 kg ± 11.24) and height (165.36 ± 3.46) who joined the Seremban Fit Challenge Season 13. The subjects were asked to join an aerobic dance class with a duration of one hour for six weeks in a row. As for the outcome, cardiovascular fitness was measured with a 1-mile run test while any changes on weight were measured using the weighing scale. The result showed that there was a significant difference between pre and post-test for cardiovascular fitness when p = 0.02 < 0.05 and weight loss when p = 0.00 < 0.05. In conclusion, a six-week long aerobic dance program would have a positive effect on cardiovascular fitness and weight. Therefore, aerobic dance may be used as an alternative for people who wish to lead a healthy lifestyle in a fun way.

Keywords: Aerobic dance, cardiovascular fitness, weight loss, 1-mile run test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3775
342 Nonlinear Modeling and Analysis of AAC infilled Sandwich Panels for out of Plane Loads

Authors: Al-Kashif M., Abdel-Mooty M., Fahmy E., Abou Zeid M., Haroun M.

Abstract:

Sandwich panels are widely used in the construction industry for their ease of assembly, light weight and efficient thermal performance. They are composed of two RC thin outer layers separated by an insulating inner layer. In this research the inner insulating layer is made of lightweight Autoclaved Aerated Concrete (AAC) blocks which has good thermal insulation properties and yet possess reasonable mechanical strength. The shear strength of the AAC infill is relied upon to replace the traditionally used insulating foam and to provide the shear capacity of the panel. A comprehensive experimental program was conducted on full scale sandwich panels subjected to bending. In this paper, detailed numerical modeling of the tested sandwich panels is reported. Nonlinear 3-D finite element modeling of the composite action of the sandwich panel is developed using ANSYS. Solid elements with different crashing and cracking capabilities and different constitutive laws were selected for the concrete and the AAC. Contact interface elements are used in this research to adequately model the shear transfer at the interface between the different layers. The numerical results showed good correlation with the experimental ones indicating the adequacy of the model in estimating the loading capacity of panels.

Keywords: Autoclaved Aerated Concrete, Concrete Sandwich Panels, Finite Element Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3078
341 Computer Software Applicable in Rehabilitation, Cardiology and Molecular Biology

Authors: P. Kowalska, P. Gabka, K. Kamieniarz, M. Kamieniarz, W. Stryla, P. Guzik, T. Krauze

Abstract:

We have developed a computer program consisting of 6 subtests assessing the children hand dexterity applicable in the rehabilitation medicine. We have carried out a normative study on a representative sample of 285 children aged from 7 to 15 (mean age 11.3) and we have proposed clinical standards for three age groups (7-9, 9-11, 12-15 years). We have shown statistical significance of differences among the corresponding mean values of the task time completion. We have also found a strong correlation between the task time completion and the age of the subjects, as well as we have performed the test-retest reliability checks in the sample of 84 children, giving the high values of the Pearson coefficients for the dominant and non-dominant hand in the range 0.740.97 and 0.620.93, respectively. A new MATLAB-based programming tool aiming at analysis of cardiologic RR intervals and blood pressure descriptors, is worked out, too. For each set of data, ten different parameters are extracted: 2 in time domain, 4 in frequency domain and 4 in Poincaré plot analysis. In addition twelve different parameters of baroreflex sensitivity are calculated. All these data sets can be visualized in time domain together with their power spectra and Poincaré plots. If available, the respiratory oscillation curves can be also plotted for comparison. Another application processes biological data obtained from BLAST analysis.

Keywords: Biomedical data base processing, Computer software, Hand dexterity, Heart rate and blood pressure variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
340 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives

Authors: Andreas Theissler, Ian Dear

Abstract:

In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.

Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
339 Markov Game Controller Design Algorithms

Authors: Rajneesh Sharma, M. Gopal

Abstract:

Markov games are a generalization of Markov decision process to a multi-agent setting. Two-player zero-sum Markov game framework offers an effective platform for designing robust controllers. This paper presents two novel controller design algorithms that use ideas from game-theory literature to produce reliable controllers that are able to maintain performance in presence of noise and parameter variations. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. Our approach generates an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment, and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed controller architectures attempt to improve controller reliability by a gradual mixing of algorithmic approaches drawn from the game theory literature and the Minimax-Q Markov game solution approach, in a reinforcement-learning framework. We test the proposed algorithms on a simulated Inverted Pendulum Swing-up task and compare its performance against standard Q learning.

Keywords: Reinforcement learning, Markov Decision Process, Matrix Games, Markov Games, Smooth Fictitious play, Controller, Inverted Pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
338 Comparison among Various Question Generations for Decision Tree Based State Tying in Persian Language

Authors: Nasibeh Nasiri, Dawood Talebi Khanmiri

Abstract:

Performance of any continuous speech recognition system is highly dependent on performance of the acoustic models. Generally, development of the robust spoken language technology relies on the availability of large amounts of data. Common way to cope with little data for training each state of Markov models is treebased state tying. This tying method applies contextual questions to tie states. Manual procedure for question generation suffers from human errors and is time consuming. Various automatically generated questions are used to construct decision tree. There are three approaches to generate questions to construct HMMs based on decision tree. One approach is based on misrecognized phonemes, another approach basically uses feature table and the other is based on state distributions corresponding to context-independent subword units. In this paper, all these methods of automatic question generation are applied to the decision tree on FARSDAT corpus in Persian language and their results are compared with those of manually generated questions. The results show that automatically generated questions yield much better results and can replace manually generated questions in Persian language.

Keywords: Decision Tree, Markov Models, Speech Recognition, State Tying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
337 Asset Management for Educational Buildings in Egypt

Authors: M. Abdelhamid, I. Beshara, M. Ghoneim

Abstract:

In Egypt, the concept of Asset Management (AM) is new; however, the need for applying it has become crucial because deteriorating or losing an asset is unaffordable in a developing country like Egypt. Therefore the current study focuses on educational buildings as one of the most important assets regarding planning, building, operating and maintenance expenditures. The main objective of this study is to develop a SAMF for educational buildings in Egypt. The General Authority for Educational Buildings (GAEB) was chosen as a case study of the current research as it represents the biggest governmental organization responsible for planning, operating and maintaining schools in Egypt. To achieve the research objective, structured interviews were conducted with senior managers of GAEB using a pre designed questionnaire to explore the current practice of AM. Gab analysis technique was applied against best practices compounded from a vast literature review to identify gaps between current practices and the desired one. The previous steps mainly revealed; limited knowledge about strategic asset management, no clear goals, no training, no real risk plan and lack of data, technical and financial resources. Based on the findings, a SAMF for GAEB was introduced and Framework implementation steps and assessment techniques were explained in detail.

Keywords: Strategic Asset Management, Educational Building, Framework, Gab Analysis, Developing Country.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
336 Competency-Based Social Work Practice and Challenges in Child Case Management: Studies in the Districts Social Welfare Services, Malaysia

Authors: S. Brahim, M. S. Mohamad, E. Zakaria, N. Sarnon@Kusenin

Abstract:

This study aimed to explore the practical experience of child welfare caseworkers and professionalism in child case management in Malaysia. This paper discussed the specific social work practice competency and the challenges faced by child caseworkers in the fieldwork. This research was qualitative with grounded theory approach. Four sessions of focused group discussion (FGD) were conducted involving a total of 27 caseworkers (child protector and probation officers) in the Klang Valley. The study found that the four basic principles of knowledge in child case management namely: 1. knowledge in child case management; 2. professional values of caseworkers towards children; 3. skills in managing cases; and 4. culturally competent practice in child case management. In addition, major challenges faced by the child case manager are the capacity and commitment of the family in children’s rehabilitation program, the credibility of caseworkers are being challenged, and the challenges of support system from intra and interagency. This study is important for policy makers to take into account the capacity and the needs of the child’s caseworker in accordance with the national social work competency framework. It is expected that case management services for children will improve systematically in line with national standards.

Keywords: Social work practice, child case management, competency-based knowledge, and professionalism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908
335 Design of Compliant Mechanism Based Microgripper with Three Finger Using Topology Optimization

Authors: R. Bharanidaran, B. T. Ramesh

Abstract:

High precision in motion is required to manipulate the micro objects in precision industries for micro assembly, cell manipulation etc. Precision manipulation is achieved based on the appropriate mechanism design of micro devices such as microgrippers. Design of a compliant based mechanism is the better option to achieve a highly precised and controlled motion. This research article highlights the method of designing a compliant based three fingered microgripper suitable for holding asymmetric objects. Topological optimization technique, a systematic method is implemented in this research work to arrive a topologically optimized design of the mechanism needed to perform the required micro motion of the gripper. Optimization technique has a drawback of generating senseless regions such as node to node connectivity and staircase effect at the boundaries. Hence, it is required to have post processing of the design to make it manufacturable. To reduce the effect of post processing stage and to preserve the edges of the image, a cubic spline interpolation technique is introduced in the MATLAB program. Structural performance of the topologically developed mechanism design is tested using finite element method (FEM) software. Further the microgripper structure is examined to find its fatigue life and vibration characteristics.

Keywords: Compliant mechanism, Cubic spline interpolation, FEM, Topology optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3579
334 Study Punching Shear of Steel Fiber Reinforced Self Compacting Concrete Slabs by Nonlinear Analysis

Authors: Khaled S. Ragab

Abstract:

This paper deals with behavior and capacity of punching shear force for flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC) by application nonlinear finite element method. Nonlinear finite element analysis on nine slab specimens was achieved by using ANSYS software. A general description of the finite element method, theoretical modeling of concrete and reinforcement are presented. The nonlinear finite element analysis program ANSYS is utilized owing to its capabilities to predict either the response of reinforced concrete slabs in the post elastic range or the ultimate strength of a flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC). In order to verify the analytical model used in this research using test results of the experimental data, the finite element analysis were performed then a parametric study of the effect ratio of flexural reinforcement, ratio of the upper reinforcement, and volume fraction of steel fibers were investigated. A comparison between the experimental results and those predicted by the existing models are presented. Results and conclusions may be useful for designers, have been raised, and represented.

Keywords: Nonlinear FEM, Punching shear behavior, Flat slabs and Steel fiber reinforced self compacting concrete (SFRSCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4256
333 The Effectiveness of Implementing Interactive Training for Teaching Kazakh Language

Authors: Samal Abzhanova, Saule Mussabekova

Abstract:

Today, a new system of education is being created in Kazakhstan in order to develop the system of education and to satisfy the world class standards. For this purpose, there have been established new requirements and responsibilities to the instructors. Students should not be limited with providing only theoretical knowledge. Also, they should be encouraged to be competitive, to think creatively and critically. Moreover, students should be able to implement these skills into practice. These issues could be resolved through the permanent improvement of teaching methods. Therefore, a specialist who teaches the languages should use up-to-date methods and introduce new technologies. The result of the investigation suggests that an interactive teaching method is one of the new technologies in this field. This paper aims to provide information about implementing new technologies in the process of teaching language. The paper will discuss about necessity of introducing innovative technologies and the techniques of organizing interactive lessons. At the same time, the structure of the interactive lesson, conditions, principles, discussions, small group works and role-playing games will be considered. Interactive methods are carried out with the help of several types of activities, such as working in a team (with two or more group of people), playing situational or role-playing games, working with different sources of information, discussions, presentations, creative works and learning through solving situational tasks and etc.

Keywords: Games, interactive learning, Kazakh language, teaching methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
332 The Effect of Reducing Superimposed Dead Load on the Lateral Seismic Deformations of Structures

Authors: H. Alnajajra, A. Touqan, M. Dwaikat

Abstract:

The vast majority of the Middle East countries are prone to earthquakes. Despite that and from a seismic hazard point of view, the higher values of the superimposed dead load intensity of partitions and wearing materials of the constructed reinforced concrete slabs in these countries can increase the earthquake vulnerability of the structures. The primary objective of this paper is to investigate the effect of reducing superimposed dead load on the lateral seismic deformations of structures, the inter-story drifts and the seismic pounding damages. The study utilizes a group of three reinforced concrete structures at three different site conditions. These structures are assumed to be constructed in Nablus city of Palestine, and having superimposed dead load value as 1 kN/m2, 3 kN/m2, and 5 kN/m2, respectively. SAP2000 program, Version 18.1.1, is used to perform the response spectrum analysis to obtain the potential lateral seismic deformations of the studied models. Amazingly, the study points that, at the same site, superimposed dead load has a minor effect on the lateral deflections of the models. This, however, promotes the hypothesis that buildings failed during earthquakes mainly because they were not designed appropriately against gravity loads.

Keywords: Gravity loads, inter-story drifts, lateral seismic deformations, reinforced concrete slabs, response spectrum method, SAP2000, seismic design, seismic pounding, superimposed dead load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
331 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
330 JaCoText: A Pretrained Model for Java Code-Text Generation

Authors: Jessica Lòpez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract:

Pretrained transformer-based models have shown high performance in natural language generation task. However, a new wave of interest has surged: automatic programming language generation. This task consists of translating natural language instructions to a programming code. Despite the fact that well-known pretrained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformers neural network. It aims to generate java source code from natural language text. JaCoText leverages advantages of both natural language and code generation models. More specifically, we study some findings from the state of the art and use them to (1) initialize our model from powerful pretrained models, (2) explore additional pretraining on our java dataset, (3) carry out experiments combining the unimodal and bimodal data in the training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.

Keywords: Java code generation, Natural Language Processing, Sequence-to-sequence Models, Transformers Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855