Search results for: prediction error bias correction.
612 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution
Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell
Abstract:
This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.Keywords: Detection, leakage, neural networks, sensors, water distribution networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744611 Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations
Authors: Marco Actis Grande, Somlak Wannarumon
Abstract:
This paper proposes the numerical simulation of the investment casting of gold jewelry. It aims to study the behavior of fluid flow during mould filling and solidification and to optimize the process parameters, which lead to predict and control casting defects such as gas porosity and shrinkage porosity. A finite difference method, computer simulation software FLOW-3D was used to simulate the jewelry casting process. The simplified model was designed for both numerical simulation and real casting production. A set of sensor acquisitions were allocated on the different positions of the wax tree of the model to detect filling times, while a set of thermocouples were allocated to detect the temperature during casting and cooling. Those detected data were applied to validate the results of the numerical simulation to the results of the real casting. The resulting comparisons signify that the numerical simulation can be used as an effective tool in investment-casting-process optimization and casting-defect prediction.Keywords: Computer fluid dynamic, Investment casting, Jewelry, Mould filling, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736610 Economic Loss due to Ganoderma Disease in Oil Palm
Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho
Abstract:
Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.
Keywords: Ganoderma, oil palm, regression model, yield loss, economic loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3236609 Numerical Simulation for the Formability Prediction of the Laser Welded Blanks (TWB)
Authors: Hossein Mamusi, Abolfazl Masoumi, Ramezanali Mahdavinezhad
Abstract:
Tailor-welded Blanks (TWBs) are tailor made for different complex component designs by welding multiple metal sheets with different thicknesses, shapes, coatings or strengths prior to forming. In this study the Hemispherical Die Stretching (HDS) test (out-of-plane stretching) of TWBs were simulated via ABAQUS/Explicit to obtain the Forming Limit Diagrams (FLDs) of Stainless steel (AISI 304) laser welded blanks with different thicknesses. Two criteria were used to detect the start of necking to determine the FLD for TWBs and parent sheet metals. These two criteria are the second derivatives of the major and thickness strains that are given from the strain history of simulation. In the other word, in these criteria necking starts when the second derivative of thickness or major strain reaches its maximum. With having the time of onset necking, one can measure the major and minor strains at the critical area and determine the forming limit curve.Keywords: TWB, Forming Limit Diagram, Necking criteria, ABAQUS/Explicit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642608 The Accuracy of the Flight Derivative Estimates Derived from Flight Data
Authors: Jung-hoon Lee, Eung Tai Kim, Byung-hee Chang, In-hee Hwang, Dae-sung Lee
Abstract:
The accuracy of estimated stability and control derivatives of a light aircraft from flight test data were evaluated. The light aircraft, named ChangGong-91, is the first certified aircraft from the Korean government. The output error method, which is a maximum likelihood estimation technique and considers measurement noise only, was used to analyze the aircraft responses measures. The multi-step control inputs were applied in order to excite the short period mode for the longitudinal and Dutch-roll mode for the lateral-directional motion. The estimated stability/control derivatives of Chan Gong-91 were analyzed for the assessment of handling qualities comparing them with those of similar aircraft. The accuracy of the flight derivative estimates derived from flight test measurement was examined in engineering judgment, scatter and Cramer-Rao bound, which turned out to be satisfactory with minor defects..Keywords: Light Aircraft, Flight Test, Accuracy, Engineering Judgment, Scatter, Cramer-Rao Bound
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951607 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware
Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas
Abstract:
Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.
Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3886606 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: Instance selection, data reduction, MapReduce, kNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015605 Computer Proven Correctness of the Rabin Public-Key Scheme
Authors: Johannes Buchmann, Markus Kaiser
Abstract:
We decribe a formal specification and verification of the Rabin public-key scheme in the formal proof system Is-abelle/HOL. The idea is to use the two views of cryptographic verification: the computational approach relying on the vocabulary of probability theory and complexity theory and the formal approach based on ideas and techniques from logic and programming languages. The analysis presented uses a given database to prove formal properties of our implemented functions with computer support. Thema in task in designing a practical formalization of correctness as well as security properties is to cope with the complexity of cryptographic proving. We reduce this complexity by exploring a light-weight formalization that enables both appropriate formal definitions as well as eficient formal proofs. This yields the first computer-proved implementation of the Rabin public-key scheme in Isabelle/HOL. Consequently, we get reliable proofs with a minimal error rate augmenting the used database. This provides a formal basis for more computer proof constructions in this area.Keywords: public-key encryption, Rabin public-key scheme, formalproof system, higher-order logic, formal verification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590604 3D Numerical Studies on External Aerodynamics of a Flying Car
Authors: Sasitharan Ambicapathy, J. Vignesh, P. Sivaraj, Godfrey Derek Sams, K. Sabarinath, V. R. Sanal Kumar
Abstract:
The external flow simulation of a flying car at take off phase is a daunting task owing to the fact that the prediction of the transient unsteady flow features during its deployment phase is very complex. In this paper 3D numerical simulations of external flow of Ferrari F430 proposed flying car with different NACA 9618 rectangular wings have been carried. Additionally, the aerodynamics characteristics have been generated for optimizing its geometry for achieving the minimum take off velocity with better overall performance in both road and air. The three-dimensional standard k-omega turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies we have conjectured that Ferrari F430 flying car facilitated with high wings having three different deployment histories during the take off phase is the best choice for accomplishing its better performance for the commercial applications.
Keywords: Aerodynamics of flying car, air taxi, negative lift. roadable airplane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3822603 Non-Homogeneous Layered Fiber Reinforced Concrete
Authors: Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100mm ×100mm ×400mmwith layers of non-homogeneously distributed fibers inside them were fabricated.
Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.
Keywords: Fiber reinforced concrete, 4-point bending, steel fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008602 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.
Keywords: Decision tree, water quality, water pollution, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 258601 A Subtractive Clustering Based Approach for Early Prediction of Fault Proneness in Software Modules
Authors: Ramandeep S. Sidhu, Sunil Khullar, Parvinder S. Sandhu, R. P. S. Bedi, Kiranbir Kaur
Abstract:
In this paper, subtractive clustering based fuzzy inference system approach is used for early detection of faults in the function oriented software systems. This approach has been tested with real time defect datasets of NASA software projects named as PC1 and CM1. Both the code based model and joined model (combination of the requirement and code based metrics) of the datasets are used for training and testing of the proposed approach. The performance of the models is recorded in terms of Accuracy, MAE and RMSE values. The performance of the proposed approach is better in case of Joined Model. As evidenced from the results obtained it can be concluded that Clustering and fuzzy logic together provide a simple yet powerful means to model the earlier detection of faults in the function oriented software systems.
Keywords: Subtractive clustering, fuzzy inference system, fault proneness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2579600 Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
Different order modulations combined with different coding schemes, allow sending more bits per symbol, thus achieving higher throughputs and better spectral efficiencies. However, it must also be noted that when using a modulation technique such as 64- QAM with less overhead bits, better signal-to-noise ratios (SNRs) are needed to overcome any Inter symbol Interference (ISI) and maintain a certain bit error ratio (BER). The use of adaptive modulation allows wireless technologies to yielding higher throughputs while also covering long distances. The aim of this paper is to implement an Adaptive Modulation and Coding (AMC) features of the WiMAX PHY in MATLAB and to analyze the performance of the system in different channel conditions (AWGN, Rayleigh and Rician fading channel) with channel estimation and blind equalization. Simulation results have demonstrated that the increment in modulation order causes to increment in throughput and BER values. These results derived a trade-off among modulation order, FFT length, throughput, BER value and spectral efficiency. The BER changes gradually for AWGN channel and arbitrarily for Rayleigh and Rician fade channels.
Keywords: AMC, CSI, CMA, OFDM, OFDMA, WiMAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3100599 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.
Keywords: Inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692598 Development of Mathematical Model for Overall Oxygen Transfer Coefficient of an Aerator and Comparison with CFD Modeling
Authors: Shashank.B. Thakre, L.B. Bhuyar, Samir.J. Deshmukh
Abstract:
The value of overall oxygen transfer Coefficient (KLa), which is the best measure of oxygen transfer in water through aeration, is obtained by a simple approach, which sufficiently explains the utility of the method to eliminate the discrepancies due to inaccurate assumption of saturation dissolved oxygen concentration. The rate of oxygen transfer depends on number of factors like intensity of turbulence, which in turns depends on the speed of rotation, size, and number of blades, diameter and immersion depth of the rotor, and size and shape of aeration tank, as well as on physical, chemical, and biological characteristic of water. An attempt is made in this paper to correlate the overall oxygen transfer Coefficient (KLa), as an independent parameter with other influencing parameters mentioned above. It has been estimated that the simulation equation developed predicts the values of KLa and power with an average standard error of estimation of 0.0164 and 7.66 respectively and with R2 values of 0.979 and 0.989 respectively, when compared with experimentally determined values. The comparison of this model is done with the model generated using Computational fluid dynamics (CFD) and both the models were found to be in good agreement with each other.Keywords: CFD Model, Overall oxygen transfer coefficient, Power, Mathematical Model, Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767597 Design of Stable IIR Digital Filters with Specified Group Delay Errors
Authors: Yasunori Sugita, Toshinori Yoshikawa
Abstract:
The design problem of Infinite Impulse Response (IIR) digital filters is usually expressed as the minimization problem of the complex magnitude error that includes both the magnitude and phase information. However, the group delay of the filter obtained by solving such design problem may be far from the desired group delay. In this paper, we propose a design method of stable IIR digital filters with prespecified maximum group delay errors. In the proposed method, the approximation problems of the magnitude-phase and group delay are separately defined, and these two approximation problems are alternately solved using successive projections. As a result, the proposed method can design the IIR filters that satisfy the prespecified allowable errors for not only the complex magnitude but also the group delay by alternately executing the coefficient update for the magnitude-phase and the group delay approximation. The usefulness of the proposed method is verified through some examples.Keywords: Filter design, Group delay approximation, Stable IIRfilters, Successive projection method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560596 The Effects of Detector Spacing on Travel Time Prediction on Freeways
Authors: Piyali Chaudhuri, Peter T. Martin, Aleksandar Z. Stevanovic, Chongkai Zhu
Abstract:
Loop detectors report traffic characteristics in real time. They are at the core of traffic control process. Intuitively, one would expect that as density of detection increases, so would the quality of estimates derived from detector data. However, as detector deployment increases, the associated operating and maintenance cost increases. Thus, traffic agencies often need to decide where to add new detectors and which detectors should continue receiving maintenance, given their resource constraints. This paper evaluates the effect of detector spacing on freeway travel time estimation. A freeway section (Interstate-15) in Salt Lake City metropolitan region is examined. The research reveals that travel time accuracy does not necessarily deteriorate with increased detector spacing. Rather, the actual location of detectors has far greater influence on the quality of travel time estimates. The study presents an innovative computational approach that delivers optimal detector locations through a process that relies on Genetic Algorithm formulation.Keywords: Detector, Freeway, Genetic algorithm, Travel timeestimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666595 Improved Torque Control of Electrical Load Simulator with Parameters and State Estimation
Authors: Nasim Ullah, Shaoping Wang
Abstract:
ELS is an important ground based hardware in the loop simulator used for aerodynamics torque loading experiments of the actuators under test. This work focuses on improvement of the transient response of torque controller with parameters uncertainty of Electrical Load Simulator (ELS).The parameters of load simulator are estimated online and the model is updated, eliminating the model error and improving the steady state torque tracking response of torque controller. To improve the Transient control performance the gain of robust term of SMC is updated online using fuzzy logic system based on the amount of uncertainty in parameters of load simulator. The states of load simulator which cannot be measured directly are estimated using luenberger observer with update of new estimated parameters. The stability of the control scheme is verified using Lyapunov theorem. The validity of proposed control scheme is verified using simulations.Keywords: ELS, Observer, Transient Performance, SMC, Extra Torque, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036594 Crack Opening Investigation in Fiberconcrete
Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
This work had three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. On the obtained forcedisplacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiberconcrete prisms (with dimensions 10x10x40cm) subjected to 4-point bending. After testing was analyzed main crack. At the third stage elaborated prediction model for the fiberconcrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack. Experimental and theoretical (modeling) data were compared.
Keywords: Fiberconcrete, pull-out, fiber channel, layered fiberconcrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854593 Efficient Tools for Managing Uncertainties in Design and Operation of Engineering Structures
Authors: J. Menčík
Abstract:
Actual load, material characteristics and other quantities often differ from the design values. This can cause worse function, shorter life or failure of a civil engineering structure, a machine, vehicle or another appliance. The paper shows main causes of the uncertainties and deviations and presents a systematic approach and efficient tools for their elimination or mitigation of consequences. Emphasis is put on the design stage, which is most important for reliability ensuring. Principles of robust design and important tools are explained, including FMEA, sensitivity analysis and probabilistic simulation methods. The lifetime prediction of long-life objects can be improved by long-term monitoring of the load response and damage accumulation in operation. The condition evaluation of engineering structures, such as bridges, is often based on visual inspection and verbal description. Here, methods based on fuzzy logic can reduce the subjective influences.Keywords: Design, fuzzy methods, Monte Carlo, reliability, robust design, sensitivity analysis, simulation, uncertainties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814592 Simulation of Enhanced Biomass Gasification for Hydrogen Production using iCON
Authors: Mohd K. Yunus, Murni M. Ahmad, Abrar Inayat, Suzana Yusup
Abstract:
Due to the environmental and price issues of current energy crisis, scientists and technologists around the globe are intensively searching for new environmentally less-impact form of clean energy that will reduce the high dependency on fossil fuel. Particularly hydrogen can be produced from biomass via thermochemical processes including pyrolysis and gasification due to the economic advantage and can be further enhanced through in-situ carbon dioxide removal using calcium oxide. This work focuses on the synthesis and development of the flowsheet for the enhanced biomass gasification process in PETRONAS-s iCON process simulation software. This hydrogen prediction model is conducted at operating temperature between 600 to 1000oC at atmospheric pressure. Effects of temperature, steam-to-biomass ratio and adsorbent-to-biomass ratio were studied and 0.85 mol fraction of hydrogen is predicted in the product gas. Comparisons of the results are also made with experimental data from literature. The preliminary economic potential of developed system is RM 12.57 x 106 which equivalent to USD 3.77 x 106 annually shows economic viability of this process.Keywords: Biomass, Gasification, Hydrogen, iCON.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604591 Prediction of Unsteady Forced Convection over Square Cylinder in the Presence of Nanofluid by Using ANN
Authors: Ajoy Kumar Das, Prasenjit Dey
Abstract:
Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nanoparticles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.Keywords: Forced convection, Square cylinder, nanofluid, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361590 Solving Bus Terminal Location Problem Using Genetic Algorithm
Authors: S. Babaie-Kafaki, R. Ghanbari, S.H. Nasseri, E. Ardil
Abstract:
Bus networks design is an important problem in public transportation. The main step to this design, is determining the number of required terminals and their locations. This is an especial type of facility location problem, a large scale combinatorial optimization problem that requires a long time to be solved. The genetic algorithm (GA) is a search and optimization technique which works based on evolutionary principle of natural chromosomes. Specifically, the evolution of chromosomes due to the action of crossover, mutation and natural selection of chromosomes based on Darwin's survival-of-the-fittest principle, are all artificially simulated to constitute a robust search and optimization procedure. In this paper, we first state the problem as a mixed integer programming (MIP) problem. Then we design a new crossover and mutation for bus terminal location problem (BTLP). We tested the different parameters of genetic algorithm (for a sample problem) and obtained the optimal parameters for solving BTLP with numerical try and error.Keywords: Bus networks, Genetic algorithm (GA), Locationproblem, Mixed integer programming (MIP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304589 Inferential Reasoning for Heterogeneous Multi-Agent Mission
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.Keywords: Distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639588 A Hybrid Model of ARIMA and Multiple Polynomial Regression for Uncertainties Modeling of a Serial Production Line
Authors: Amir Azizi, Amir Yazid b. Ali, Loh Wei Ping, Mohsen Mohammadzadeh
Abstract:
Uncertainties of a serial production line affect on the production throughput. The uncertainties cannot be prevented in a real production line. However the uncertain conditions can be controlled by a robust prediction model. Thus, a hybrid model including autoregressive integrated moving average (ARIMA) and multiple polynomial regression, is proposed to model the nonlinear relationship of production uncertainties with throughput. The uncertainties under consideration of this study are demand, breaktime, scrap, and lead-time. The nonlinear relationship of production uncertainties with throughput are examined in the form of quadratic and cubic regression models, where the adjusted R-squared for quadratic and cubic regressions was 98.3% and 98.2%. We optimized the multiple quadratic regression (MQR) by considering the time series trend of the uncertainties using ARIMA model. Finally the hybrid model of ARIMA and MQR is formulated by better adjusted R-squared, which is 98.9%.Keywords: ARIMA, multiple polynomial regression, production throughput, uncertainties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198587 Knowledge Based Wear Particle Analysis
Authors: Mohammad S. Laghari, Qurban A. Memon, Gulzar A. Khuwaja
Abstract:
The paper describes a knowledge based system for analysis of microscopic wear particles. Wear particles contained in lubricating oil carry important information concerning machine condition, in particular the state of wear. Experts (Tribologists) in the field extract this information to monitor the operation of the machine and ensure safety, efficiency, quality, productivity, and economy of operation. This procedure is not always objective and it can also be expensive. The aim is to classify these particles according to their morphological attributes of size, shape, edge detail, thickness ratio, color, and texture, and by using this classification thereby predict wear failure modes in engines and other machinery. The attribute knowledge links human expertise to the devised Knowledge Based Wear Particle Analysis System (KBWPAS). The system provides an automated and systematic approach to wear particle identification which is linked directly to wear processes and modes that occur in machinery. This brings consistency in wear judgment prediction which leads to standardization and also less dependence on Tribologists.Keywords: Computer vision, knowledge based systems, morphology, wear particles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743586 CFD Analysis of Natural Ventilation Behaviour in Four Sided Wind Catcher
Authors: M. Hossein Ghadiri, Mohd Farid Mohamed, N. Lukman N. Ibrahim
Abstract:
Wind catchers are traditional natural ventilation systems attached to buildings in order to ventilate the indoor air. The most common type of wind catcher is four sided one which is capable to catch wind in all directions. CFD simulation is the perfect way to evaluate the wind catcher performance. The accuracy of CFD results is the issue of concern, so sensitivity analyses is crucial to find out the effect of different settings of CFD on results. This paper presents a series of 3D steady RANS simulations for a generic isolated four-sided wind catcher attached to a room subjected to wind direction ranging from 0º to 180º with an interval of 45º. The CFD simulations are validated with detailed wind tunnel experiments. The influence of an extensive range of computational parameters is explored in this paper, including the resolution of the computational grid, the size of the computational domain and the turbulence model. This study found that CFD simulation is a reliable method for wind catcher study, but it is less accurate in prediction of models with non perpendicular wind directions.Keywords: Wind catcher, CFD, natural ventilation, sensitivity study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693585 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting
Authors: Gangmin Li, Fan Yang
Abstract:
Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behavior data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.
Keywords: Personalized recommendation, generative user modeling, user intention identification, large language models, chain-of-thought prompting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84584 Increasing Profitability Supported by Innovative Methods and Designing Monitoring Software in Condition-Based Maintenance: A Case Study
Authors: Nasrin Farajiparvar
Abstract:
In the present article, a new method has been developed to enhance the application of equipment monitoring, which in turn results in improving condition-based maintenance economic impact in an automobile parts manufacturing factory. This study also describes how an effective software with a simple database can be utilized to achieve cost-effective improvements in maintenance performance. The most important results of this project are indicated here: 1. 63% reduction in direct and indirect maintenance costs. 2. Creating a proper database to analyse failures. 3. Creating a method to control system performance and develop it to similar systems. 4. Designing a software to analyse database and consequently create technical knowledge to face unusual condition of the system. Moreover, the results of this study have shown that the concept and philosophy of maintenance has not been understood in most Iranian industries. Thus, more investment is strongly required to improve maintenance conditions.
Keywords: Condition-based maintenance, Economic savings, Iran industries, Machine life prediction software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574583 Numerical Modeling of Benzene Transport in Andosol and Sand: Adequacy of Diffusion and Equilibrium Adsorption Equations
Authors: Ping Du, Masaki Sagehashi, Akihiko Terada, Masaaki Hosomi
Abstract:
Prediction of benzene transport in soil and volatilization from soil to the atmosphere is important for the preservation of human health and management of contaminated soils. The adequacy of a simple numerical model, assuming two-phase diffusion and equilibrium of liquid/solid adsorption, was investigated by experimental data of benzene concentration in a flux chamber (with headspace) where Andosol and sand were filled. Adsorption experiment for liquid phase was performed to determine an adsorption coefficient. Furthermore, adequacy of vapor phase adsorption was also studied through two runs of experiment using sand with different water content. The results show that the model adequately predicted benzene transport and volatilization from Andosol and sand with water content of 14.0%. In addition, the experiment additionally revealed that vapor phase adsorption should be considered in diffusion model for sand with very low water content.
Keywords: Benzene; Transport Model, Adsorption, Soil Contaminant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988