
 

 

  
 Abstract—Bus networks design is an important problem in 

public transportation. The main step to this design, is determining the 
number of required terminals and their locations. This is an especial 
type of facility location problem, a large scale combinatorial 
optimization problem that requires a long time to be solved. 

The genetic algorithm (GA) is a search and optimization technique 
which works based on evolutionary principle of natural 
chromosomes. Specifically, the evolution of chromosomes due to the 
action of crossover, mutation and natural selection of chromosomes 
based on Darwin's survival-of-the-fittest principle, are all artificially 
simulated to constitute a robust search and optimization procedure. 

In this paper, we first state the problem as a mixed integer 
programming (MIP) problem. Then we design a new crossover and 
mutation for bus terminal location problem (BTLP). We tested the 
different parameters of genetic algorithm (for a sample problem) and 
obtained the optimal parameters for solving BTLP with numerical try 
and error.  
 

Keywords—Bus networks, Genetic algorithm (GA), Location 
problem, Mixed integer programming (MIP). 

 

I. INTRODUCTION 
ENETIC algorithms are nondeterministic stochastic 
search/optimization methods that utilize the theories of 

evolution and natural selection to solve a problem within a 
complex solution space.  

As a brief comment on biological background, we can state 
that all living organisms consist of cells. In each cell, there is 
the same set of chromosomes. A chromosome's characteristic 
is determined by the gene. The set of chromosomes is called 
the population.   

Genetic algorithms are the member of a wider family of 
algorithms, Evolutionary Algorithms (EA). The algorithms in 
EA share a common conceptual base of simulating the 
evolution of individual structures via processes of selection, 
crossover and mutation. The processes depend on the 
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perceived performance of the individual structures as defined 
by an environment. 

GAs maintain a population of structures, that evolve 
according to rules of selection and other operators, that are 
referred to as "search operators" such as crossover (or 
recombination) and mutation. Each individual in the 
population receives a measure of its fitness in the 
environment. In the optimization problems, fitness of a 
chromosome is usually the value of its objective function. 
Selection focuses attention on high fitness individuals.  
     In this paper, we first formulate the BTLP in section 2 and 
then in section 3 we explain a way that the BTLP is encoded 
and prepared for solving with GA. Moreover, we state a way 
that the natural operators such as selection, crossover and 
mutation are simulated in sections 4 and 5. Finally, in section 
6 we solve a sample problem and report some interesting 
results.  

II. FORMULATION OF BTLP AS AN MIP  
A main step to bus networks design, is determining the 

number of required terminals and their locations. The BTLP is 
an especial type of facility location problem, a large scale 
combinatorial optimization that requires a long time to be 
solved.  

For stating the BTLP, we consider a set of nodes (with their 
coordinates) in a city. We suppose that the number of enter 
and exit of passengers in every node (that is called potential of 
the node) is available. Also, we suppose that if a node is 
accepted as a bus terminal, it can service the other nodes that 
are located in its neighborhood.  

Definition 2.1. The neighborhood of node i (that we 
named it *

iJ ) is the set of all nodes j such that the distance 

between i and j is less than or equal to r ( r is a constant 
that is called the radius of the neighborhood).  

Parameters of the BTLP are: 
J : The set of all nodes of the network. 
I : A subset of J that contains the candidate nodes for    
making bus terminals. 

ijc : Distance between nodes i and j . 

jd : Potential of node j for j J∈ . 

k : Number of required terminals. 
( )ijf c : A decreasing exponential function of ijc (in this  

paper we have: ( ) ijc
ijf c e −= ). 
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*
iJ : A subset of J that contains all nodes that can be serviced  

from node i I∈ . 
B : A very large number. 

Variables of BTLP are: 

ijx :  The value of service that node *
ij J∈ can received 

from node i I∈ . 

iy (Binary variable): 1iy = , if node i I∈ is accepted as a 

bus terminal, else 0iy = . 
The BTLP is formulated as follows: 

 
       

*

. ( ).
i

j ij ij
i I j J

Max d f c x
∈ ∈
∑ ∑  

*:

. . 1
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ij
i I j J
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≤ ∀ ∈∑  
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i I

y k
∈

=∑  

*0 ,ij ix i I j J≥ ∀ ∈ ∈  

0,1iy i I= ∀ ∈  
 

The constraint (2.1) shows that just if node i is accepted as 
a bus terminal ( 1iy = ), it can service the other nodes in its 
neighborhood. Also, the constraint (2.2) controls the number 
of required terminals. As an important point, if node j in a 
feasible solution of BTLP is located in m neighborhoods 
related to 1,..., mi i I∈ , then the values of ijx  for 

1,..., mi i i= , depends on the distances directly.   

III. ENCODING   
The chromosomes should in some way contain information 

a bout the feasible solutions of BTLP. In this paper, we use 
binary encoding that is due to [6]. In binary encoding every 
chromosome is a string of bits (genes), equal to 0 or 1. 

We explain the procedure of encoding in this paper by an 
example. Assume that 2k = and the candidate nodes (among 
60 nodes) are: 1, 6, 19, 44, and 58, respectively. Then 
consider chromosome y in the following form: 

 
This chromosome shows a feasible solution in which just 
nodes 1 and 19 are accepted as bus terminals. 

It is obvious that each chromosome is just related to one 
feasible solution and conversely, each feasible solution is just 
related to one chromosome, so for a chromosome like y , we 
can compute the value of objective function as its fitness.  
 

IV. SELECTION 
According to Darwin's evolution theory, the best 

individuals should survive and create new offspring. There are 
many methods for selection the best chromosomes from a 
population, for example roulette wheel selection, Boltzman 
selection, tournament selection, rank selection, steady state 
selection and so on. In this paper we use roulette wheel 
selection. 

In roulette wheel selection, parents are selected according to 
their fitness. The better the chromosomes are, the more chance 
to be selected they have.  

Imagine a roulette wheel (pie chart) where all chromosomes 
in the population are placed according to their normalized 
fitness. Then a random number is generated that decides 
which chromosome should be selected. Chromosomes with 
bigger fitness values will be selected more times since they 
occupy more space on the pie. 

V. CROSSOVER AND MUTATION    
Selection alone can not introduce any new chromosomes 

into the population, i.e., it can not find new points in the 
search space. These are generated by genetically-inspired 
operators, of which the most well known are crossover and 
mutation. Crossover is sometimes referred to as 
recombination, too. 

The crossover and mutation are most important parts of a 
genetic algorithm. The performance of the algorithm is mainly 
influenced by these operators. Usually, there is predefined 
probability of procreation via each of these operators. 
Traditionally, these probability values are selected such that 
crossover is the most frequently used, with mutation being 
resorted to only relatively. Here we named the probability 
related to crossover by [0.8,0.99]pc ∈ and the probability 
related to mutation by [0.01,0.20]pm ∈ . Of the two 
operators, mutation involves only a single parent and result in 
the creation of a single offspring. The standard crossover 
operator called simple crossover has numerous variants such 
as partially-mapped, position-based, order-based, subtour 
chunking, cyclic, acyclic, inversion, and edge-recombination 
crossovers. All of them involve two parents. The detailed 
description and discussion of the various types of crossover 
operators is given in [4]. 

Crossover takes two chromosomes and combines them 
(with a random process) to produce a new chromosome (or 
two chromosomes). In this paper for performance of the 
crossover on two chromosomes 'y and "y , we keep the 
common 0 and 1 in the chromosomes 'y and "y  (as good  
(1) or bad (0) properties of the chromosomes) for the new 
chromosome y , and then for necessary positions (genes) 
equal to 1 (that we named them full positions) to 
complete y as a chromosome with k full positions, we use 
an alternative and stochastic procedure. 

For example, consider the chromosomes 'y  and "y  in the 
following forms: 
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The output of the crossover operator on these chromosomes 
may be in this form: 
 

     
 

Mutation is applied to each child usually after crossover. It 
randomly alters each gene with a small probability (usually 
less than 0.2). Mutation provides a small amount of random 
search, and helps to ensure that no point in the search space 
has a zero probability of being examined. 

In this paper, for the mutation operator on chromosome y , 
we chose randomly a full position of chromosome y  and 
change it to zero, instead we consider index K  such that: 

 

{ }* i *i: y 0
= max  

K i

j j
j J j J

d d
=

∈ ∈
∑ ∑  

and let 1Ky = . This mutation may improve the objective 
function, too. 

VI. NUMERICAL RESULTS   
In this section, we consider a test problem with these 

properties: 
60, 20, 5.J I k= = =  

We have the points in J with their coordinates, so it is easy 
to determine the distances. We prepared the software to 
simulating the operators in GA with MATLAB. We tried to 
determine the optimal values of pc and pm . So, we changed 
these parameters in the intervals that we explained in section 
4. 

Our study shows that the optimal parameters are 
0.93pc =  and 0.02pm = . As a result, the plot of increase 

of objective function with respect to the number of iterations 
of GA with optimal parameters is shown. Note that, in the 
Table I the parameters are defined as follows: 

IVOF (Initial Value of Objective Function): Optimal value 
of objective function in the initial population, 
    FVOF (Final Value of Objective Function): Optimal value 
of objective function in the final population, 
    Avg: Average of a column.  

For the optimal parameters the results are: 
 

 
Fig. 1 The plots of objective function in different run of GA with the 

optimal parameters 
 
 

TABLE I 
NUMERICAL RESULTS FOR THE  OPTIMAL PARAMETERS 

pc: 0.93  pm: 0.02 
IVOF FVOF Time(S) 
23.16 29.10 0.86(S) 
27.79 32.02 0.05(S) 
24.00 28.18 0.09(S) 
22.04 29.00 0.02(S) 
20.78 27.11 0.11(S) 
20.38 28.18 0.02(S) 
22.93 29.32 0.02(S) 
25.27 28.18 0.02(S) 
25.08 32.02 0.02(S) 
23.19 29.32 0.02(S) 
23.90 25.98 0.02(S) 
24.35 32.02 0.02(S) 
20.69 30.18 0.02(S) 
19.14 27.79 0.02(S) 
23.12 32.02 0.02(S) 
22.36 29.32 0.02(S) 
18.02 30.69 0.02(S) 
25.58 29.81 0.02(S) 
17.71 30.69 0.02(S) 
23.82 30.69 0.02(S) 

 Avg: 29.58 Avg: 0.07(S) 
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Also some useful results are as follows:   

Fig. 2 Plot of the average values of objective function with respect to 
pc and pm 

 
 

 
Fig. 3 Plot of the average values of the time with respect to pc and 

pm 
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