Search results for: low power embedded control SW.
4695 Development of 3D Laser Scanner for Robot Navigation
Authors: A. Emre Ozturk, Ergun Ercelebi
Abstract:
Autonomous robotic systems need an equipment like a human eye for their movement. In this study a 3D laser scanner has been designed and implemented for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper.
Keywords: 3D Laser Scanner, embedded systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24304694 Digital Power Management Hardware Realization Using FPGA
Authors: Kar Foo Chong, Andreas Lee Astuti, Pradeep K. Gopalakrishnan, T. Hui Teo
Abstract:
This paper describes design of a digital feedback loop for a low switching frequency dc-dc switching converters. Low switching frequencies were selected in this design. A look up table for the digital PID (proportional integrator differentiator) compensator was implemented using Altera Stratix II with built-in ADC (analog-to-digital converter) to achieve this hardware realization. Design guidelines are given for the PID compensator, high frequency DPWM (digital pulse width modulator) and moving average filter.Keywords: dc-dc converter, FPGA, PID, power management, .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19974693 Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage
Authors: Jehnming Lin
Abstract:
The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constrains. Therefore the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities.
Keywords: Laser cleavage, controlled fracture, contact ball lens.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24784692 Floating-Point Scaling for BSS Gain Control
Authors: Abdelmalek Fermas, Adel Belouchrani, Otmane Ait Mohamed
Abstract:
In Blind Source Separation (BSS) processing, taking advantage of scaling factor indetermination and based on the floatingpoint representation, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an Automatic Gain Control (AGC) in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division free BSS algorithm with two input, two output. This technique is computationally cheaper and efficient for a hardware implementation.Keywords: Automatic Gain Control, Blind Source Separation, Floating-Point Representation, FPGA Implementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15204691 Control Configuration Selection and Controller Design for Multivariable Processes Using Normalized Gain
Authors: R. Hanuma Naik, D. V. Ashok Kumar, K. S. R. Anjaneyulu
Abstract:
Several of the practical industrial control processes are multivariable processes. Due to the relation amid the variables (interaction), delay in the loops, it is very intricate to design a controller directly for these processes. So first, the interaction of the variables is analyzed using Relative Normalized Gain Array (RNGA), which considers the time constant, static gain and delay time of the processes. Based on the effect of RNGA, relative gain array (RGA) and NI, the pair (control configuration) of variables to be controlled by decentralized control is selected. The equivalent transfer function (ETF) of the process model is estimated as first order process with delay using the corresponding elements in the Relative gain array and Relative average residence time array (RARTA) of the processes. Secondly, a decentralized Proportional- Integral (PI) controller is designed for each ETF simply using frequency response specifications. Finally, the performance and robustness of the algorithm is comparing with existing related approaches to validate the effectiveness of the projected algorithm.
Keywords: Decentralized control, interaction, Multivariable processes, relative normalized gain array, relative average residence time array, steady state gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23184690 Disturbance Observer for Lateral Trajectory Tracking Control for Autonomous and Cooperative Driving
Authors: Christian Rathgeber, Franz Winkler, Dirk Odenthal, Steffen Muller
Abstract:
In this contribution a structure for high level lateral vehicle tracking control based on the disturbance observer is presented. The structure is characterized by stationary compensating side forces disturbances and guaranteeing a cooperative behavior at the same time. Driver inputs are not compensated by the disturbance observer. Moreover the structure is especially useful as it robustly stabilizes the vehicle. Therefore the parameters are selected using the Parameter Space Approach. The implemented algorithms are tested in real world scenarios.
Keywords: Disturbance observer, trajectory tracking, robust control, autonomous driving, cooperative driving
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30254689 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15964688 Probabilistic Method of Wind Generation Placement for Congestion Management
Authors: S. Z. Moussavi, A. Badri, F. Rastegar Kashkooli
Abstract:
Wind farms (WFs) with high level of penetration are being established in power systems worldwide more rapidly than other renewable resources. The Independent System Operator (ISO), as a policy maker, should propose appropriate places for WF installation in order to maximize the benefits for the investors. There is also a possibility of congestion relief using the new installation of WFs which should be taken into account by the ISO when proposing the locations for WF installation. In this context, efficient wind farm (WF) placement method is proposed in order to reduce burdens on congested lines. Since the wind speed is a random variable and load forecasts also contain uncertainties, probabilistic approaches are used for this type of study. AC probabilistic optimal power flow (P-OPF) is formulated and solved using Monte Carlo Simulations (MCS). In order to reduce computation time, point estimate methods (PEM) are introduced as efficient alternative for time-demanding MCS. Subsequently, WF optimal placement is determined using generation shift distribution factors (GSDF) considering a new parameter entitled, wind availability factor (WAF). In order to obtain more realistic results, N-1 contingency analysis is employed to find the optimal size of WF, by means of line outage distribution factors (LODF). The IEEE 30-bus test system is used to show and compare the accuracy of proposed methodology.Keywords: Probabilistic optimal power flow, Wind power, Pointestimate methods, Congestion management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18884687 Two Day Ahead Short Term Load Forecasting Neural Network Based
Authors: Firas M. Tuaimah
Abstract:
This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity.
The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.
Keywords: Short-Term Load Forecasting, Artificial Neural Networks, Back propagation learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15604686 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability
Authors: Gayadhar Panda, P. K. Rautraya
Abstract:
In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.
Keywords: SSSC, FACTS, Controller Design, Damping of Oscillations, Multi-machine system, Modified Genetic Algorithm (MGA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20354685 Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters
Authors: Young-Tae Lee, Hee-Chang Lim
Abstract:
This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.Keywords: Darrieus wind turbine, VAWT, NACA airfoil, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29804684 Bandwidth Control Using Reconfigurable Antenna Elements
Authors: Sudhina H. K, Ravi M. Yadahalli, N. M. Shetti
Abstract:
Reconfigurable antennas represent a recent innovation in antenna design that changes from classical fixed-form, fixed function antennas to modifiable structures that can be adapted to fit the requirements of a time varying system.
The ability to control the operating band of an antenna system can have many useful applications. Systems that operate in an acquire-and-track configuration would see a benefit from active bandwidth control. In such systems a wide band search mode is first employed to find a desired signal then a narrow band track mode is used to follow only that signal. Utilizing active antenna bandwidth control, a single antenna would function for both the wide band and narrow band configurations providing the rejection of unwanted signals with the antenna hardware. This ability to move a portion of the RF filtering out of the receiver and onto the antenna itself will also aid in reducing the complexity of the often expensive RF processing subsystems.
Keywords: Designing methods, MEMS, stack, reconfigurable elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23044683 Technical and Economic Impacts of Distributed Generation on Distribution System
Authors: N. Rugthaicharoencheep, S. Auchariyamet
Abstract:
Distributed Generation (DG) in the form of renewable power generation systems is currently preferred for clean power generation. It has a significant impact on the distribution systems. This impact may be either positively or negatively depending on the distribution system, distributed generator and load characteristics. In this works, an overview of DG is briefly introduced. The technology of DG is also listed while the technical impacts and economic impacts are explained.Keywords: Distributed Generation, Technical Impacts, Economic Impacts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59824682 From Separatism to Coalition: Variants in Language Politics and Leadership Pattern in Dravidian Movement
Authors: Subramaniam Chandran
Abstract:
This paper describes the evolution of language politics and the part played by political leaders with reference to the Dravidian parties in Tamil Nadu. It explores the interesting evolution from separatism to coalition in sustaining the values of parliamentary democracy and federalism. It seems that the appropriation of language politics is fully ascribed to the DMK leadership under Annadurai and Karunanidhi. For them, the Tamil language is a self-determining power, a terrain of nationhood, and a perennial source of social and political powers. The DMK remains a symbol of Tamil nationalist party playing language politics in the interest of the Tamils. Though electoral alliances largely determine the success, the language politics still has significant space in the politics of Tamil Nadu. Ironically, DMK moves from the periphery to centre for getting national recognition for the Tamils as well as for its own maximization of power. The evolution can be seen in two major phases as: language politics for party building; and language politics for state building with three successive political processes, namely, language politics in the process of separatism, representative politics and coalition. The much pronounced Dravidian Movement is radical enough to democratize the party ideology to survive the spirit of parliamentary democracy. This has secured its own rewards in terms of political power. The political power provides the means to achieve the social and political goal of the political party. Language politics and leadership pattern actualized this trend though the movement is shifted from separatism to coalition.Keywords: Language politics, cultural nationalism, leadership, social justice
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19624681 Model Predictive 2DOF PID Slip Suppression Control of Electric Vehicle under Braking
Authors: Tohru Kawabe
Abstract:
In this paper, a 2DOF (two degrees of freedom) PID (Proportional-Integral-Derivative) controller based on MPC (Model predictive control) algorithm fo slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method aims to improve the safety and the stability of EVs under braking by controlling the wheel slip ration. There also include numerical simulation results to demonstrate the effectiveness of the method.
Keywords: Model predictive control, PID controller, Two degrees of freedom, Electric Vehicle, Slip suppression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18464680 Genetic Algorithm Based Approach for Actuator Saturation Effect on Nonlinear Controllers
Authors: M. Mohebbi, K. Shakeri
Abstract:
In the real application of active control systems to mitigate the response of structures subjected to sever external excitations such as earthquake and wind induced vibrations, since the capacity of actuators is limited then the actuators saturate. Hence, in designing controllers for linear and nonlinear structures under sever earthquakes, the actuator saturation should be considered as a constraint. In this paper optimal design of active controllers for nonlinear structures by considering the actuator saturation has been studied. To this end a method has been proposed based on defining an optimization problem which considers the minimizing of the maximum displacement of the structure as objective when a limited capacity for actuator has been used as a constraint in optimization problem. To evaluate the effectiveness of the proposed method, a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of pre-stressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used as active control mechanism and algorithm. To enhance the efficiency of the controllers, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been found by using the Distributed Genetic Algorithm (DGA). According to the results it has been concluded that the proposed method has been effective in considering the actuator saturation in designing optimal controllers for nonlinear frames. Also it has been shown that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers for considering the actuator saturation.Keywords: Active control, Actuator Saturation, Nonlinear, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14564679 General Purpose Pulse Width Modulation Based Sliding Mode Controller for Buck DC-DC
Authors: M.Bensaada , A.Boudghene Stambouli , M.Bekhti, A. Bellar, L. Boukhris
Abstract:
This paper is a simple and systematic approaches to the design and analysis a pulse width modulation (PWM) based sliding mode controller for buck DC-DC Converters. Various aspects of the design, including the practical problems and the proposed solutions, are detailed. However, these control strategies can't compensate for large load current and input voltage variations. In this paper, a new control strategy by compromising both schemes advantages and avoiding their drawbacks is proposed, analyzed and simulated.
Keywords: Buck, DC/DC converters, sliding mode control, pulse width modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26844678 Wind Energy Status in Turkey
Authors: Mustafa Engin Başoğlu, Bekir Çakir
Abstract:
Since large part of electricity is generated by using fossil based resources, energy is an important agenda for countries. In this context, renewable energy sources are alternative to conventional sources due to the depletion of fossil resources, increasing awareness of climate change and global warming concerns. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, since installed capacity of wind power has increased approximately eight times between 2008 - November of 2014, wind energy is a promising source for Turkey. Furthermore, signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish Government has announced Vision 2023 (energy targets by 2023) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). Energy targets in this plan can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Dependence on foreign energy is reduced for sustainability and energy security. On the other hand, since Turkey is surrounded by three coastal areas, wind energy potential is convenient for wind power application. As of November of 2014, total installed capacity of wind power plants is 3.51 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. In this context, one of the projects funded by private sector, universities and TUBİTAK names as MILRES is an important project aimed to promote the use wind energy in electricity generation. Within this project, wind turbine with 500 kW power has been produced and will be installed at the beginning of the 2015. After that, by using the experience obtained from the first phase of the project, a wind turbine with 2.5 MW power will be manufactured in an industrial scale.
Keywords: Wind energy, wind speed, Vision 2023, MILRES (national wind energy system), wind energy potential, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32734677 Value Stream Oriented Inventory Management
Authors: GuentherSchuh, Till Potente, SaschaFuchs, Annika Hauptvogel, Tobias Welter
Abstract:
Producing companies aspire to high delivery availability despite appearing disruptions. To ensure high delivery availability safety stocksare required. Howeversafety stock leads to additional capital commitment and compensates disruptions instead of solving the reasons.The intention is to increase the stability in production by configuring the production planning and control systematically. Thus the safety stock can be reduced. The largest proportion of inventory in producing companies is caused by batch inventory, schedule deviations and variability of demand rates.These reasons for high inventory levels can be reduced by configuring the production planning and control specifically. Hence the inventory level can be reduced. This is enabled by synchronizing the lot size straightening the demand as well as optimizing the releasing order, sequencing and capacity control.Keywords: inventory level, inventory management, production planning and control, safety stock
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16234676 Implementation the Average Input Current Mode Control of Two-Phase Interleaved Boost Converter Using Low-Cost Microcontroller
Authors: Yin Yin Phyo, Tun Lin Naing
Abstract:
In this paper, the average input current mode control is proposed for two-phase interleaved boost converter with two separate input inductors operating in continuous conduction mode (CCM). The required mathematical model is obtained from the equivalent circuits of its different four modes of operation. The small ripple approximation is derived to find the transfer functions from dynamic model using switching function. In average input current mode control, the inner current loop and outer voltage loop are designed with PI controller using bode analysis. Anti-windup structure is applied for PI controllers in control system. Moreover, the simulation work is carried out by MATLAB/Simulink. And, the hardware prototype is implemented by using low-cost microcontroller Arduino Nano. Finally, the laboratory prototype, available from the local market, is constructed to validate the mathematical model. The results show that the output voltage response is the faster rise time and settling time with acceptable overshoot.
Keywords: Average input current mode control, interleaved boost converter, low-cost microcontroller, PI controller, switching function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13524675 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran
Authors: Hamed Zolfaghari, Mojtaba Kord
Abstract:
Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that Microsoft project does not store the data in database, so the data cannot automatically be imported from Microsoft Project into Microsoft Excel. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI (Business Intelligence) for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, Human Resource (HR) reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.
Keywords: Primavera P6, SQL, Power BI, Earned Value Management, Integration Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4324674 Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive
Authors: M. Zerikat, M. Bendjebbar, N. Benouzza
Abstract:
In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.
Keywords: Induction motor, fuzzy-logic control, neural network control, indirect field oriented control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24614673 Solitons and Universes with Acceleration Driven by Bulk Particles
Authors: A. C. Amaro de Faria Jr, A. M. Canone
Abstract:
Considering a scenario where our universe is taken as a 3d domain wall embedded in a 5d dimensional Minkowski space-time, we explore the existence of a richer class of solitonic solutions and their consequences for accelerating universes driven by collisions of bulk particle excitations with the walls. In particular it is shown that some of these solutions should play a fundamental role at the beginning of the expansion process. We present some of these solutions in cosmological scenarios that can be applied to models that describe the inflationary period of the Universe.Keywords: Solitons, topological defects, Branes, kinks, accelerating universes in Brane scenarios.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7924672 Emergency Generator Sizing and Motor Starting Analysis
Authors: Mukesh Kumar Kirar, Ganga Agnihotri
Abstract:
This paper investigates the preliminary sizing of generator set to design electrical system at the early phase of a project, dynamic behavior of generator-unit, as well as induction motors, during start-up of the induction motor drives fed from emergency generator unit. The information in this paper simplifies generator set selection and eliminates common errors in selection. It covers load estimation, step loading capacity test, transient analysis for the emergency generator set. The dynamic behavior of the generator-unit, power, power factor, voltage, during Direct-on-Line start-up of the induction motor drives fed from stand alone gene-set is also discussed. It is important to ensure that plant generators operate safely and consistently, power system studies are required at the planning and conceptual design stage of the project. The most widely recognized and studied effect of motor starting is the voltage dip that is experienced throughout an industrial power system as the direct online result of starting large motors. Generator step loading capability and transient voltage dip during starting of largest motor is ensured with the help of Electrical Transient Analyzer Program (ETAP).
Keywords: Sizing, induction motor starting, load estimation, Transient Analyzer Program (ETAP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139774671 Retina Based Mouse Control (RBMC)
Authors: Arslan Qamar Malik, Jehanzeb Ahmad
Abstract:
The paper presents a novel idea to control computer mouse cursor movement with human eyes. In this paper, a working of the product has been described as to how it helps the special people share their knowledge with the world. Number of traditional techniques such as Head and Eye Movement Tracking Systems etc. exist for cursor control by making use of image processing in which light is the primary source. Electro-oculography (EOG) is a new technology to sense eye signals with which the mouse cursor can be controlled. The signals captured using sensors, are first amplified, then noise is removed and then digitized, before being transferred to PC for software interfacing.Keywords: Human Computer Interaction, Real-Time System, Electro-oculography, Signal Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42474670 A Novel Application of Network Equivalencing Method in Time Domain to Precise Calculation of Dead Time in Power Transmission Title
Authors: J. Moshtagh, L. Eslami
Abstract:
Various studies have showed that about 90% of single line to ground faults occurred on High voltage transmission lines have transient nature. This type of faults is cleared by temporary outage (by the single phase auto-reclosure). The interval between opening and reclosing of the faulted phase circuit breakers is named “Dead Time” that is varying about several hundred milliseconds. For adjustment of traditional single phase auto-reclosures that usually are not intelligent, it is necessary to calculate the dead time in the off-line condition precisely. If the dead time used in adjustment of single phase auto-reclosure is less than the real dead time, the reclosing of circuit breakers threats the power systems seriously. So in this paper a novel approach for precise calculation of dead time in power transmission lines based on the network equivalencing in time domain is presented. This approach has extremely higher precision in comparison with the traditional method based on Thevenin equivalent circuit. For comparison between the proposed approach in this paper and the traditional method, a comprehensive simulation by EMTP-ATP is performed on an extensive power network.
Keywords: Dead Time, Network Equivalencing, High Voltage Transmission Lines, Single Phase Auto-Reclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15814669 Detection of Sags, Swells, and Transients Using Windowing Technique Based On Continuous S-Transform (CST)
Authors: K. Daud, A. F. Abidin, N. Hamzah, H. S. Nagindar Singh
Abstract:
This paper produces a new approach for power quality analysis using a windowing technique based on Continuous S-transform (CST). This half-cycle window technique approach can detect almost correctly for initial detection of disturbances i.e. voltage sags, swells, and transients. Samples in half cycle window has been analyzed based continuous S-transform for entire disturbance waveform. The modified parameter has been produced by MATLAB programming m-file based on continuous s-transform. CST has better time frequency and localization property than traditional and also has ability to detect the disturbance under noisy condition correctly. The excellent time-frequency resolution characteristic of the CST makes it the most an attractive candidate for analysis of power system disturbances signals.
Keywords: Power quality disturbances, initial detection, half cycle windowing, continuous S-transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20494668 Torque Ripple Minimization in Switched Reluctance Motor Using Passivity-Based Robust Adaptive Control
Authors: M.M. Namazi, S.M. Saghaiannejad, A. Rashidi
Abstract:
In this paper by using the port-controlled Hamiltonian (PCH) systems theory, a full-order nonlinear controlled model is first developed. Then a nonlinear passivity-based robust adaptive control (PBRAC) of switched reluctance motor in the presence of external disturbances for the purpose of torque ripple reduction and characteristic improvement is presented. The proposed controller design is separated into the inner loop and the outer loop controller. In the inner loop, passivity-based control is employed by using energy shaping techniques to produce the proper switching function. The outer loop control is employed by robust adaptive controller to determine the appropriate Torque command. It can also overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. A 4KW 8/6 SRM with experimental characteristics that takes magnetic saturation into account is modeled, simulation results show that the proposed scheme has good performance and practical application prospects.Keywords: Switched Reluctance Motor, Port HamiltonianSystem, Passivity-Based Control, Torque Ripple Minimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16804667 Backstepping Sliding Mode Controller Coupled to Adaptive Sliding Mode Observer for Interconnected Fractional Nonlinear System
Authors: D. Elleuch, T. Damak
Abstract:
Performance control law is studied for an interconnected fractional nonlinear system. Applying a backstepping algorithm, a backstepping sliding mode controller (BSMC) is developed for fractional nonlinear system. To improve control law performance, BSMC is coupled to an adaptive sliding mode observer have a filtered error as a sliding surface. The both architecture performance is studied throughout the inverted pendulum mounted on a cart. Simulation result show that the BSMC coupled to an adaptive sliding mode observer have stable control law and eligible control amplitude than the BSMC.Keywords: Backstepping sliding mode controller, interconnected fractional nonlinear system, adaptive sliding mode observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22924666 Techniques for Reliability Evaluation in Distribution System Planning
Authors: T. Lantharthong, N. Phanthuna
Abstract:
This paper presents reliability evaluation techniques which are applied in distribution system planning studies and operation. Reliability of distribution systems is an important issue in power engineering for both utilities and customers. Reliability is a key issue in the design and operation of electric power distribution systems and load. Reliability evaluation of distribution systems has been the subject of many recent papers and the modeling and evaluation techniques have improved considerably.Keywords: Reliability Evaluation, Optimization Technique, Reliability Indices
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4568