Search results for: Mitigating techniques.
782 Simulating and Forecasting Qualitative Marcoeconomic Models Using Rule-Based Fuzzy Cognitive Maps
Authors: Spiros Mazarakis, George Matzavinos, Peter P. Groumpos
Abstract:
Economic models are complex dynamic systems with a lot of uncertainties and fuzzy data. Conventional modeling approaches using well known methods and techniques cannot provide realistic and satisfactory answers to today-s challenging economic problems. Qualitative modeling using fuzzy logic and intelligent system theories can be used to model macroeconomic models. Fuzzy Cognitive maps (FCM) is a new method been used to model the dynamic behavior of complex systems. For the first time FCMs and the Mamdani Model of Intelligent control is used to model macroeconomic models. This new model is referred as the Mamdani Rule-Based Fuzzy Cognitive Map (MBFCM) and provides the academic and research community with a new promising integrated advanced computational model. A new economic model is developed for a qualitative approach to Macroeconomic modeling. Fuzzy Controllers for such models are designed. Simulation results for an economic scenario are provided and extensively discussed
Keywords: Macroeconomic Models, Mamdani Rule Based- FCMs(MBFCMs), Qualitative and Dynamics System, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900781 Energy Efficient In-Network Data Processing in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
The Sensor Network consists of densely deployed sensor nodes. Energy optimization is one of the most important aspects of sensor application design. Data acquisition and aggregation techniques for processing data in-network should be energy efficient. Due to the cross-layer design, resource-limited and noisy nature of Wireless Sensor Networks(WSNs), it is challenging to study the performance of these systems in a realistic setting. In this paper, we propose optimizing queries by aggregation of data and data redundancy to reduce energy consumption without requiring all sensed data and directed diffusion communication paradigm to achieve power savings, robust communication and processing data in-network. To estimate the per-node power consumption POWERTossim mica2 energy model is used, which provides scalable and accurate results. The performance analysis shows that the proposed methods overcomes the existing methods in the aspects of energy consumption in wireless sensor networks.Keywords: Data Aggregation, Directed Diffusion, Partial Aggregation, Packet Merging, Query Plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833780 Comparison of Different Techniques for Processing and Preserving fish Rastrineobola argentea from Lake Victoria, Kenya
Authors: Ayub V. O. Ofulla, Jackson H. O. Onyuka, Samuel Wagai, Douglas Anyona, Gabriel O. Dida, John Gichuki
Abstract:
This study was set to determine the antimicrobial activities of brine salting, chlorinated solution, and oil frying treatments on enteric bacteria and fungi in Rastrineobola argentea fish from fish landing beaches within L. Victoria basin of western Kenya. Statistical differences in effectiveness of the different treatment methods was determined by single factor ANOVA, and paired two-tail t-Test was performed to compare the differences in moisture contents before and after storage. Oil fried fish recorded the lowest microbial loads, sodium chloride at 10% concentration was the second most effective and chlorinated solution even at 150ppm was the least effective against the bacteria and fungi in fish. Moisture contents of the control and treated fish were significantly lower after storage. These results show that oil frying of fish should be adopted for processing and preserving Rastrineobola argentea which is the most abundant and affordable fish species from Lake Victoria.Keywords: Fish landing beaches, Lake Victoria, oil frying, preservatives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161779 Reading Literacy and Methods of Improving Reading
Authors: Iva Košek Bartošová, Andrea Jokešová, Eva Kozlová, Helena Matějová
Abstract:
The paper presents results of a research team from Faculty of Education, University of Hradec Králové in the Czech Republic. It introduces with the most reading methods used in the 1st classes of a primary school and presents results of a pilot research focused on mastering reading techniques and the quality of reading comprehension of pupils in the first half of a school year during training in teaching reading by an analytic-synthetic method and by a genetic method. These methods of practicing reading skills are the most used ones in the Czech Republic. During the school year 2015/16 there has been a measurement made of two groups of pupils of the 1st year and monitoring of quantitative and qualitative parameters of reading pupils’ outputs by several methods. Both of these methods are based on different theoretical basis and each of them has a specific educational and methodical procedure. This contribution represents results during a piloting project and draws pilot conclusions which will be verified in the subsequent broader research at the end of the school year of the first class of primary school.
Keywords: Analytic-synthetic method of reading, genetic method of reading, reading comprehension, reading literacy, reading methods, reading speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042778 Examining the Value of Attribute Scores for Author-Supplied Keyphrases in Automatic Keyphrase Extraction
Authors: Vicky Min-How Lim, Siew Fan Wong, Tong Ming Lim
Abstract:
Automatic keyphrase extraction is useful in efficiently locating specific documents in online databases. While several techniques have been introduced over the years, improvement on accuracy rate is minimal. This research examines attribute scores for author-supplied keyphrases to better understand how the scores affect the accuracy rate of automatic keyphrase extraction. Five attributes are chosen for examination: Term Frequency, First Occurrence, Last Occurrence, Phrase Position in Sentences, and Term Cohesion Degree. The results show that First Occurrence is the most reliable attribute. Term Frequency, Last Occurrence and Term Cohesion Degree display a wide range of variation but are still usable with suggested tweaks. Only Phrase Position in Sentences shows a totally unpredictable pattern. The results imply that the commonly used ranking approach which directly extracts top ranked potential phrases from candidate keyphrase list as the keyphrases may not be reliable.Keywords: Accuracy, Attribute Score, Author-supplied keyphrases, Automatic keyphrase extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352777 Numerical Study of Base Drag Reduction Using Locked Vortex Flow Management Technique for Lower Subsonic Regime
Authors: Kailas S. Jagtap, Karthik Sundarraj, Nirmal Kumar, S. Rajnarasimha, Prakash S. Kulkarni
Abstract:
The issue of turbulence base streams and the drag related to it have been of important attention for rockets, missiles, and aircraft. Different techniques are used for base drag reduction. This paper presents the numerical study of numerous drag reduction technique. The base drag or afterbody drag of bluff bodies can be reduced easily using locked vortex drag reduction technique. For bluff bodies having a cylindrical shape, the base drag is much larger compared to streamlined bodies. For such bodies using splitter plates, the vortex can be trapped between the base and the plate, which results in smooth flow. Splitter plate with round and curved corner shapes has influence in drag reduction. In this paper, the comparison is done between single splitter plate as different positions and with the bluff body. Base drag for the speed of 30m/s can be reduced about 20% to 30% by using single splitter plate as compared to the bluff body.
Keywords: Base drag, bluff body, splitter plate, vortex flow, ANSYS, Fluent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922776 To Know the Way to the Unknown: A Semi-Experimental Study on the Implication of Skills and Knowledge for Creative Processes in Higher Education
Authors: Mikkel Snorre Wilms Boysen
Abstract:
From a theoretical perspective, expertise is generally considered a precondition for creativity. The assumption is that an individual needs to master the common and accepted rules and techniques within a certain knowledge-domain in order to create something new and valuable. However, real life cases, and a limited amount of empirical studies, demonstrate that this assumption may be overly simple. In this article, this question is explored through a number of semi-experimental case studies conducted within the fields of music, technology, and youth culture. The studies indicate that, in various ways, expertise plays an important part in creative processes. However, the case studies also indicate that expertise sometimes leads to an entrenched perspective, in the sense that knowledge and experience may work as a path into the well-known rather than into the unknown. In this article, these issues are explored with reference to different theoretical approaches to creativity and learning, including actor-network theory, the theory of blind variation and selective retention, and Csikszentmihalyi’s system model. Finally, some educational aspects and implications of this are discussed.Keywords: Creativity, education, expertise, technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754775 Stability Analysis of a Class of Nonlinear Systems Using Discrete Variable Structures and Sliding Mode Control
Authors: Vivekanandan C., Prabhakar .R., Prema D.
Abstract:
This paper presents the application of discrete-time variable structure control with sliding mode based on the 'reaching law' method for robust control of a 'simple inverted pendulum on moving cart' - a standard nonlinear benchmark system. The controllers designed using the above techniques are completely insensitive to parametric uncertainty and external disturbance. The controller design is carried out using pole placement technique to find state feedback gain matrix , which decides the dynamic behavior of the system during sliding mode. This is followed by feedback gain realization using the control law which is synthesized from 'Gao-s reaching law'. The model of a single inverted pendulum and the discrete variable structure control controller are developed, simulated in MATLAB-SIMULINK and results are presented. The response of this simulation is compared with that of the discrete linear quadratic regulator (DLQR) and the advantages of sliding mode controller over DLQR are also presentedKeywords: Inverted pendulum, Variable Structure, Sliding mode control, Discrete-time systems, Nonlinear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003774 Optimization Approaches for a Complex Dairy Farm Simulation Model
Authors: Jagannath Aryal, Don Kulasiri, Dishi Liu
Abstract:
This paper describes the optimization of a complex dairy farm simulation model using two quite different methods of optimization, the Genetic algorithm (GA) and the Lipschitz Branch-and-Bound (LBB) algorithm. These techniques have been used to improve an agricultural system model developed by Dexcel Limited, New Zealand, which describes a detailed representation of pastoral dairying scenarios and contains an 8-dimensional parameter space. The model incorporates the sub-models of pasture growth and animal metabolism, which are themselves complex in many cases. Each evaluation of the objective function, a composite 'Farm Performance Index (FPI)', requires simulation of at least a one-year period of farm operation with a daily time-step, and is therefore computationally expensive. The problem of visualization of the objective function (response surface) in high-dimensional spaces is also considered in the context of the farm optimization problem. Adaptations of the sammon mapping and parallel coordinates visualization are described which help visualize some important properties of the model-s output topography. From this study, it is found that GA requires fewer function evaluations in optimization than the LBB algorithm.Keywords: Genetic Algorithm, Linux Cluster, LipschitzBranch-and-Bound, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109773 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method
Authors: N. Fusun Oyman Serteller
Abstract:
In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples. Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.
Keywords: Finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713772 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008771 A Proposal on the Educational Transactional Analysis as a Dialogical Vision of Culture: Conceptual Signposts and Practical Tools for Educators
Authors: Marina Sartor Hoffer
Abstract:
The multicultural composition of today's societies poses new challenges to educational contexts. Schools are therefore called first to develop dialogic aptitudes and communicative skills adapted to the complex reality of post-modern societies. It is indispensable for educators and for young people to learn theoretical and practical tools during their scholastic path, in order to allow the knowledge of themselves and of the others with the aim of recognizing the value of the others regardless of their culture. Dialogic Skills help to understand and manage individual differences by allowing the solution of problems and preventing conflicts. The Educational Sector of Eric Berne’s Transactional Analysis offers a range of methods and techniques for this purpose. Educational Transactional Analysis is firmly anchored in the Personalist Philosophy and deserves to be promoted as a theoretical frame suitable to face the challenges of contemporary education. The goal of this paper is therefore to outline some conceptual and methodological signposts for the education to dialogue by drawing concepts and methodologies from educational transactional analysis.
Keywords: Dialogic process, education to dialogue, educational transactional analysis, personalism, the good of the relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908770 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province
Authors: Kourosh Nazarian
Abstract:
Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.Keywords: Stress, creep, surface runoff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717769 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM
Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen
Abstract:
Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.Keywords: Fatigue damage, FORM, monopile, monte carlo simulation, reliability, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189768 An Approach to Measure Snow Depth of Winter Accumulation at Basin Scale Using Satellite Data
Authors: M. Geetha Priya, D. Krishnaveni
Abstract:
Snow depth estimation and monitoring studies have been carried out for decades using empirical relationship or extrapolation of point measurements carried out in field. With the development of advanced satellite based remote sensing techniques, a modified approach is proposed in the present study to estimate the winter accumulated snow depth at basin scale. Assessment of snow depth by differencing Digital Elevation Model (DEM) generated at the beginning and end of winter season can be experimented for the region of interest (Himalayan and polar regions) accounting for winter accumulation (solid precipitation). The proposed approach is based on existing geodetic method that is being used for glacier mass balance estimation. Considering the satellite datasets purely acquired during beginning and end of winter season, it is possible to estimate the change in depth or thickness for the snow that is accumulated during the winter as it takes one year for the snow to get transformed into firn (snow that has survived one summer or one-year old snow).
Keywords: Digital elevation model, snow depth, geodetic method, snow cover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716767 Effect of Inertia on the Fractal Dimension of Particle Line in three-dimensional Turbulent Flows using Kinematic Simulation
Authors: A. Abou El-Azm Aly, F. Nicolleau, T. M. Michelitsch, A. F. Nowakowski
Abstract:
The dispersion of heavy particles line in an isotropic and incompressible three-dimensional turbulent flow has been studied using the Kinematic Simulation techniques to find out the evolution of the line fractal dimension. In this study, the fractal dimension of the line is found for different cases of heavy particles inertia (different Stokes numbers) in the absence of the particle gravity with a comparison with the fractal dimension obtained in the diffusion case of material line at the same Reynolds number. It can be concluded for the dispersion of heavy particles line in turbulent flow that the particle inertia affect the fractal dimension of a line released in a turbulent flow for Stokes numbers 0.02 < St < 2. At the beginning for small times, most of the different cases are not affected by the inertia until a certain time, the particle response time τa, with larger time as the particles inertia increases, the fractal dimension of the line increases owing to the particles becoming more sensitive to the small scales which cause the change in the line shape during its journey.Keywords: Heavy particles, two-phase flow, Kinematic Simulation, Fractal dimension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262766 Lowering Error Floors by Concatenation of Low-Density Parity-Check and Array Code
Authors: Cinna Soltanpur, Mohammad Ghamari, Behzad Momahed Heravi, Fatemeh Zare
Abstract:
Low-density parity-check (LDPC) codes have been shown to deliver capacity approaching performance; however, problematic graphical structures (e.g. trapping sets) in the Tanner graph of some LDPC codes can cause high error floors in bit-error-ratio (BER) performance under conventional sum-product algorithm (SPA). This paper presents a serial concatenation scheme to avoid the trapping sets and to lower the error floors of LDPC code. The outer code in the proposed concatenation is the LDPC, and the inner code is a high rate array code. This approach applies an interactive hybrid process between the BCJR decoding for the array code and the SPA for the LDPC code together with bit-pinning and bit-flipping techniques. Margulis code of size (2640, 1320) has been used for the simulation and it has been shown that the proposed concatenation and decoding scheme can considerably improve the error floor performance with minimal rate loss.Keywords: Concatenated coding, low–density parity–check codes, array code, error floors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993765 Web Pages Aesthetic Evaluation Using Low-Level Visual Features
Authors: Maryam Mirdehghani, S. Amirhassan Monadjemi
Abstract:
Web sites are rapidly becoming the preferred media choice for our daily works such as information search, company presentation, shopping, and so on. At the same time, we live in a period where visual appearances play an increasingly important role in our daily life. In spite of designers- effort to develop a web site which be both user-friendly and attractive, it would be difficult to ensure the outcome-s aesthetic quality, since the visual appearance is a matter of an individual self perception and opinion. In this study, it is attempted to develop an automatic system for web pages aesthetic evaluation which are the building blocks of web sites. Based on the image processing techniques and artificial neural networks, the proposed method would be able to categorize the input web page according to its visual appearance and aesthetic quality. The employed features are multiscale/multidirectional textural and perceptual color properties of the web pages, fed to perceptron ANN which has been trained as the evaluator. The method is tested using university web sites and the results suggested that it would perform well in the web page aesthetic evaluation tasks with around 90% correct categorization.Keywords: Web Page Design, Web Page Aesthetic, Color Spaces, Texture, Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634764 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655763 Impact of Safety and Quality Considerations of Housing Clients on the Construction Firms’ Intention to Adopt Quality Function Deployment: A Case of Construction Sector
Authors: Saif Ul Haq
Abstract:
The current study intends to examine the safety and quality considerations of clients of housing projects and their impact on the adoption of Quality Function Deployment (QFD) by the construction firm. Mixed method research technique has been used to collect and analyze the data wherein a survey was conducted to collect the data from 220 clients of housing projects in Saudi Arabia. Then, the telephonic and Skype interviews were conducted to collect data of 15 professionals working in the top ten real estate companies of Saudi Arabia. Data were analyzed by using partial least square (PLS) and thematic analysis techniques. Findings reveal that today’s customer prioritizes the safety and quality requirements of their houses and as a result, construction firms adopt QFD to address the needs of customers. The findings are of great importance for the clients of housing projects as well as for the construction firms as they could apply QFD in housing projects to address the safety and quality concerns of their clients.Keywords: Construction industry, quality considerations, quality function deployment, safety considerations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 899762 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.
Keywords: Neural network computing, information processing, input-output mapping, training time, computers with high memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323761 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials
Authors: R. Ziaie Moayed, A. Khalili
Abstract:
Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.
Keywords: Bearing capacity, FLAC3D, geosynthetic, settlement, stone column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085760 An Innovative Green Cooling Approach Using Peltier Chip in Milling Operation for Surface Roughness Improvement
Authors: Md. Anayet U. Patwari, Mohammad Ahsan Habib, Md. Tanzib Ehsan, Md Golam Ahnaf, Md. S. I. Chowdhury
Abstract:
Surface roughness is one of the key quality parameters of the finished product. During any machining operation, high temperatures are generated at the tool-chip interface impairing surface quality and dimensional accuracy of products. Cutting fluids are generally applied during machining to reduce temperature at the tool-chip interface. However, usages of cutting fluids give rise to problems such as waste disposal, pollution, high cost, and human health hazard. Researchers, now-a-days, are opting towards dry machining and other cooling techniques to minimize use of coolants during machining while keeping surface roughness of products within desirable limits. In this paper, a concept of using peltier cooling effects during aluminium milling operation has been presented and adopted with an aim to improve surface roughness of the machined surface. Experimental evidence shows that peltier cooling effect provides better surface roughness of the machined surface compared to dry machining.
Keywords: Aluminium, surface roughness, Peltier cooling effect, milling operation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952759 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data
Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone
Abstract:
This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease dataset, the study successfully identified key factors, and the results were consistent with previous studies.
Keywords: Lyme disease, Poisson generalized linear model, Ridge regression, Lasso Regression, elastic net regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122758 Memory Leak Detection in Distributed System
Authors: Roohi Shabrin S., Devi Prasad B., Prabu D., Pallavi R. S., Revathi P.
Abstract:
Due to memory leaks, often-valuable system memory gets wasted and denied for other processes thereby affecting the computational performance. If an application-s memory usage exceeds virtual memory size, it can leads to system crash. Current memory leak detection techniques for clusters are reactive and display the memory leak information after the execution of the process (they detect memory leak only after it occur). This paper presents a Dynamic Memory Monitoring Agent (DMMA) technique. DMMA framework is a dynamic memory leak detection, that detects the memory leak while application is in execution phase, when memory leak in any process in the cluster is identified by DMMA it gives information to the end users to enable them to take corrective actions and also DMMA submit the affected process to healthy node in the system. Thus provides reliable service to the user. DMMA maintains information about memory consumption of executing processes and based on this information and critical states, DMMA can improve reliability and efficaciousness of cluster computing.Keywords: Dynamic Memory Monitoring Agent (DMMA), Cluster Computing, Memory Leak, Fault Tolerant Framework, Dynamic Memory Leak Detection (DMLD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284757 Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods
Authors: Halil Ibrahim Demir, Caner Erden, Mumtaz Ipek, Ozer Uygun
Abstract:
Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.
Keywords: Process planning, weighted scheduling, weighted due-date assignment, genetic search, simulated annealing, hybrid meta-heuristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588756 Influence of Radio Frequency Identification Technology in Logistic, Inventory Control and Supply Chain Optimization
Authors: H. Amoozad-khalili, R. Tavakkoli-Moghaddam, N.Shahab-Dehkordi
Abstract:
The main aim of Supply Chain Management (SCM) is to produce, distribute, logistics and deliver goods and equipment in right location, right time, right amount to satisfy costumers, with minimum time and cost waste. So implementing techniques that reduce project time and cost, and improve productivity and performance is very important. Emerging technologies such as the Radio Frequency Identification (RFID) are now making it possible to automate supply chains in a real time manner and making them more efficient than the simple supply chain of the past for tracing and monitoring goods and products and capturing data on movements of goods and other events. This paper considers concepts, components and RFID technology characteristics by concentration of warehouse and inventories management. Additionally, utilization of RFID in the role of improving information management in supply chain is discussed. Finally, the facts of installation and this technology-s results in direction with warehouse and inventory management and business development will be presented.Keywords: Logistics, Supply Chain Management, RFIDTechnology, Inventory Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835755 Finite Element Simulation of Multi-Stage Deep Drawing Processes and Comparison with Experimental Results
Authors: A. Pourkamali Anaraki, M. Shahabizadeh, B. Babaee
Abstract:
The plastic forming process of sheet plate takes an important place in forming metals. The traditional techniques of tool design for sheet forming operations used in industry are experimental and expensive methods. Prediction of the forming results, determination of the punching force, blank holder forces and the thickness distribution of the sheet metal will decrease the production cost and time of the material to be formed. In this paper, multi-stage deep drawing simulation of an Industrial Part has been presented with finite element method. The entire production steps with additional operations such as intermediate annealing and springback has been simulated by ABAQUS software under axisymmetric conditions. The simulation results such as sheet thickness distribution, Punch force and residual stresses have been extracted in any stages and sheet thickness distribution was compared with experimental results. It was found through comparison of results, the FE model have proven to be in close agreement with those of experiment.Keywords: Deep drawing, Finite element method, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5077754 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector
Authors: Ahmed Al-Adaileh, Souheil Khaddaj
Abstract:
Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.
Keywords: Smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787753 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing
Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall
Abstract:
Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.Keywords: Ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189