Search results for: Spectral features
1705 The Effect of Global Solar Variations on the Performance of n-AlGaAs/p-GaAs Solar Cells
Authors: A. Guechi, M. Chegaar
Abstract:
This study investigates how AlGaAs/GaAs thin film solar cells perform under varying global solar spectrum due to the changes of environmental parameters such as the air mass and the atmospheric turbidity. The solar irradiance striking the solar cell is simulated using the spectral irradiance model SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) for clear skies on the site of Setif (Algeria). The results show a reduction in the short circuit current due to increasing atmospheric turbidity, it is 63.09% under global radiation. However increasing air mass leads to a reduction in the short circuit current of 81.73%. The efficiency decreases with increasing atmospheric turbidity and air mass.
Keywords: AlGaAs/GaAs, Solar Cells, Environmental parameters, Spectral Variation, SMARTS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22061704 Recursive Wiener-Khintchine Theorem
Authors: Khalid M. Aamir, Mohammad A. Maud
Abstract:
Power Spectral Density (PSD) computed by taking the Fourier transform of auto-correlation functions (Wiener-Khintchine Theorem) gives better result, in case of noisy data, as compared to the Periodogram approach. However, the computational complexity of Wiener-Khintchine approach is more than that of the Periodogram approach. For the computation of short time Fourier transform (STFT), this problem becomes even more prominent where computation of PSD is required after every shift in the window under analysis. In this paper, recursive version of the Wiener-Khintchine theorem has been derived by using the sliding DFT approach meant for computation of STFT. The computational complexity of the proposed recursive Wiener-Khintchine algorithm, for a window size of N, is O(N).
Keywords: Power Spectral Density (PSD), Wiener-KhintchineTheorem, Periodogram, Short Time Fourier Transform (STFT), TheSliding DFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24841703 Bio-inspired Audio Content-Based Retrieval Framework (B-ACRF)
Authors: Noor A. Draman, Campbell Wilson, Sea Ling
Abstract:
Content-based music retrieval generally involves analyzing, searching and retrieving music based on low or high level features of a song which normally used to represent artists, songs or music genre. Identifying them would normally involve feature extraction and classification tasks. Theoretically the greater features analyzed, the better the classification accuracy can be achieved but with longer execution time. Technique to select significant features is important as it will reduce dimensions of feature used in classification and contributes to the accuracy. Artificial Immune System (AIS) approach will be investigated and applied in the classification task. Bio-inspired audio content-based retrieval framework (B-ACRF) is proposed at the end of this paper where it embraces issues that need further consideration in music retrieval performances.
Keywords: Bio-inspired audio content-based retrieval framework, features selection technique, low/high level features, artificial immune system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15931702 A Comprehensive and Integrated Framework for Formal Specification of Concurrent Systems
Authors: Sara Sharifi Rad, Hassan Haghighi
Abstract:
Due to important issues, such as deadlock, starvation, communication, non-deterministic behavior and synchronization, concurrent systems are very complex, sensitive, and error-prone. Thus ensuring reliability and accuracy of these systems is very essential. Therefore, there has been a big interest in the formal specification of concurrent programs in recent years. Nevertheless, some features of concurrent systems, such as dynamic process creation, scheduling and starvation have not been specified formally yet. Also, some other features have been specified partially and/or have been described using a combination of several different formalisms and methods whose integration needs too much effort. In other words, a comprehensive and integrated specification that could cover all aspects of concurrent systems has not been provided yet. Thus, this paper makes two major contributions: firstly, it provides a comprehensive formal framework to specify all well-known features of concurrent systems. Secondly, it provides an integrated specification of these features by using just a single formal notation, i.e., the Z language.Keywords: Concurrent systems, Formal methods, Formal specification, Z language
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13411701 Characterization of Responsivity, Sensitivity and Spectral Response in Thin Film SOI photo-BJMOS -FET Compatible with CMOS Technology
Authors: Hai-Qing Xie, Yun Zeng, Yong-Hong Yan, Jian-Ping Zeng, Tai-Hong Wang
Abstract:
Photo-BJMOSFET (Bipolar Junction Metal-Oxide- Semiconductor Field Effect Transistor) fabricated on SOI film was proposed. ITO film is adopted in the device as gate electrode to reduce light absorption. Depletion region but not inversion region is formed in film by applying gate voltage (but low reverse voltage) to achieve high photo-to-dark-current ratio. Comparisons of photoelectriccharacteristics executed among VGK=0V, 0.3V, 0.6V, 0.9V and 1.0V (reverse voltage VAK is equal to 1.0V for total area of 10×10μm2). The results indicate that the greatest improvement in photo-to-dark-current ratio is achieved up to 2.38 at VGK=0.6V. In addition, photo-BJMOSFET is compatible with CMOS integration due to big input resistanceKeywords: Photo-BJMOSFET, Responsivity, Sensitivity, Spectral response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15391700 Aliveness Detection of Fingerprints using Multiple Static Features
Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim
Abstract:
Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19251699 Principal Component Regression in Noninvasive Pineapple Soluble Solids Content Assessment Based On Shortwave Near Infrared Spectrum
Authors: K. S. Chia, H. Abdul Rahim, R. Abdul Rahim
Abstract:
The Principal component regression (PCR) is a combination of principal component analysis (PCA) and multiple linear regression (MLR). The objective of this paper is to revise the use of PCR in shortwave near infrared (SWNIR) (750-1000nm) spectral analysis. The idea of PCR was explained mathematically and implemented in the non-destructive assessment of the soluble solid content (SSC) of pineapple based on SWNIR spectral data. PCR achieved satisfactory results in this application with root mean squared error of calibration (RMSEC) of 0.7611 Brix°, coefficient of determination (R2) of 0.5865 and root mean squared error of crossvalidation (RMSECV) of 0.8323 Brix° with principal components (PCs) of 14.Keywords: Pineapple, Shortwave near infrared, Principal component regression, Non-invasive measurement; Soluble solids content
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20271698 Performance of Random Diagonal Codes for Spectral Amplitude Coding Optical CDMA Systems
Authors: Hilal A. Fadhil, Syed A. Aljunid, R. Badlishah Ahmed
Abstract:
In this paper we study the use of a new code called Random Diagonal (RD) code for Spectral Amplitude Coding (SAC) optical Code Division Multiple Access (CDMA) networks, using Fiber Bragg-Grating (FBG), FBG consists of a fiber segment whose index of reflection varies periodically along its length. RD code is constructed using code level and data level, one of the important properties of this code is that the cross correlation at data level is always zero, which means that Phase intensity Induced Phase (PIIN) is reduced. We find that the performance of the RD code will be better than Modified Frequency Hopping (MFH) and Hadamard code It has been observed through experimental and theoretical simulation that BER for RD code perform significantly better than other codes. Proof –of-principle simulations of encoding with 3 channels, and 10 Gbps data transmission have been successfully demonstrated together with FBG decoding scheme for canceling the code level from SAC-signal.Keywords: FBG, MFH, OCDMA, PIIN, BER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17431697 Road Extraction Using Stationary Wavelet Transform
Authors: Somkait Udomhunsakul
Abstract:
In this paper, a novel road extraction method using Stationary Wavelet Transform is proposed. To detect road features from color aerial satellite imagery, Mexican hat Wavelet filters are used by applying the Stationary Wavelet Transform in a multiresolution, multi-scale, sense and forming the products of Wavelet coefficients at a different scales to locate and identify road features at a few scales. In addition, the shifting of road features locations is considered through multiple scales for robust road extraction in the asymmetry road feature profiles. From the experimental results, the proposed method leads to a useful technique to form the basis of road feature extraction. Also, the method is general and can be applied to other features in imagery.
Keywords: Road extraction, Multiresolution, Stationary Wavelet Transform, Multi-scale analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18771696 Improved Feature Processing for Iris Biometric Authentication System
Authors: Somnath Dey, Debasis Samanta
Abstract:
Iris-based biometric authentication is gaining importance in recent times. Iris biometric processing however, is a complex process and computationally very expensive. In the overall processing of iris biometric in an iris-based biometric authentication system, feature processing is an important task. In feature processing, we extract iris features, which are ultimately used in matching. Since there is a large number of iris features and computational time increases as the number of features increases, it is therefore a challenge to develop an iris processing system with as few as possible number of features and at the same time without compromising the correctness. In this paper, we address this issue and present an approach to feature extraction and feature matching process. We apply Daubechies D4 wavelet with 4 levels to extract features from iris images. These features are encoded with 2 bits by quantizing into 4 quantization levels. With our proposed approach it is possible to represent an iris template with only 304 bits, whereas existing approaches require as many as 1024 bits. In addition, we assign different weights to different iris region to compare two iris templates which significantly increases the accuracy. Further, we match the iris template based on a weighted similarity measure. Experimental results on several iris databases substantiate the efficacy of our approach.Keywords: Iris recognition, biometric, feature processing, patternrecognition, pattern matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21391695 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.
Keywords: Automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20041694 A New DIDS Design Based on a Combination Feature Selection Approach
Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman
Abstract:
Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original dataset. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 dataset is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.Keywords: Distributed intrusion detection system, mobile agent, feature selection, Bees Algorithm, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19391693 Decision Tree-based Feature Ranking using Manhattan Hierarchical Cluster Criterion
Authors: Yasmin Mohd Yacob, Harsa A. Mat Sakim, Nor Ashidi Mat Isa
Abstract:
Feature selection study is gaining importance due to its contribution to save classification cost in terms of time and computation load. In search of essential features, one of the methods to search the features is via the decision tree. Decision tree act as an intermediate feature space inducer in order to choose essential features. In decision tree-based feature selection, some studies used decision tree as a feature ranker with a direct threshold measure, while others remain the decision tree but utilized pruning condition that act as a threshold mechanism to choose features. This paper proposed threshold measure using Manhattan Hierarchical Cluster distance to be utilized in feature ranking in order to choose relevant features as part of the feature selection process. The result is promising, and this method can be improved in the future by including test cases of a higher number of attributes.
Keywords: Feature ranking, decision tree, hierarchical cluster, Manhattan distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19681692 Power Allocation in User-Centric Cell-Free Massive MIMO Systems with Limited Fronthaul Capacity
Authors: Siminfar Samakoush Galougah
Abstract:
In this paper, we study two power allocation problems for an uplink user-centric (UC) cell-free massive multiple-input multiple-output (CF-mMIMO) system. Besides, we assume each access point (AP) is connected to a central processing unit (CPU) via fronthaul link with limited capacity. To efficiently use the fronthaul capacity, two strategies for transmitting signals from APs to the CPU are employed; namely: compress-forward-estimate (CFE), estimate-compress-forward (ECF). The capacity of the aforementioned strategies in user-centric CF-mMIMO are drived. Then, we solved the two power allocation problems with minimum Spectral Efficiency (SE) and sum-SE maximization objectives for ECF and CFE strategies.
Keywords: Cell-free massive MIMO, limited capacity fronthaul, spectral efficiency, power allocation problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721691 Monitoring Blood Pressure Using Regression Techniques
Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim
Abstract:
Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.
Keywords: Blood pressure, noninvasive optical system, PCA, continuous monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6871690 Terrain Classification for Ground Robots Based on Acoustic Features
Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow
Abstract:
The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.Keywords: Terrain classification, acoustic features, autonomous robots, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11321689 An Efficient Obstacle Detection Algorithm Using Colour and Texture
Authors: Chau Nguyen Viet, Ian Marshall
Abstract:
This paper presents a new classification algorithm using colour and texture for obstacle detection. Colour information is computationally cheap to learn and process. However in many cases, colour alone does not provide enough information for classification. Texture information can improve classification performance but usually comes at an expensive cost. Our algorithm uses both colour and texture features but texture is only needed when colour is unreliable. During the training stage, texture features are learned specifically to improve the performance of a colour classifier. The algorithm learns a set of simple texture features and only the most effective features are used in the classification stage. Therefore our algorithm has a very good classification rate while is still fast enough to run on a limited computer platform. The proposed algorithm was tested with a challenging outdoor image set. Test result shows the algorithm achieves a much better trade-off between classification performance and efficiency than a typical colour classifier.
Keywords: Colour, texture, classification, obstacle detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18231688 Assessment of In-Situ Water Sensitive Urban Design Elements
Authors: Niranjali Jayasuirya, Majell Backhausen
Abstract:
Water Sensitive Urban Design (WSUD) features are increasingly used to treat and manage polluted stormwater runoff in urbanised areas. It is important to monitor and evaluate the effectiveness of the infrastructure in achieving their intended performance targets after constructing and operating these features overtime. The paper presents the various methods of analysis used to assess the effectiveness of the in-situ WSUD features, such as: onsite visual inspections during operational and non operational periods, maintenance audits and periodic water quality testing. The results will contribute to a better understanding of the operational and maintenance needs of in-situ WSUD features and assist in providing recommendations to better manage life cycle performance.Keywords: Bio-retention swales, Maintenance plan, Operational plan, Water Sensitive Urban Design, Water quality improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18291687 A Matching Algorithm of Minutiae for Real Time Fingerprint Identification System
Authors: Shahram Mohammadi, Ali Frajzadeh
Abstract:
A lot of matching algorithms with different characteristics have been introduced in recent years. For real time systems these algorithms are usually based on minutiae features. In this paper we introduce a novel approach for feature extraction in which the extracted features are independent of shift and rotation of the fingerprint and at the meantime the matching operation is performed much more easily and with higher speed and accuracy. In this new approach first for any fingerprint a reference point and a reference orientation is determined and then based on this information features are converted into polar coordinates. Due to high speed and accuracy of this approach and small volume of extracted features and easily execution of matching operation this approach is the most appropriate for real time applications.
Keywords: Matching, Minutiae, Reference point, Reference orientation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24141686 Issues in Spectral Source Separation Techniques for Plant-wide Oscillation Detection and Diagnosis
Authors: A.K. Tangirala, S. Babji
Abstract:
In the last few years, three multivariate spectral analysis techniques namely, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) have emerged as effective tools for oscillation detection and isolation. While the first method is used in determining the number of oscillatory sources, the latter two methods are used to identify source signatures by formulating the detection problem as a source identification problem in the spectral domain. In this paper, we present a critical drawback of the underlying linear (mixing) model which strongly limits the ability of the associated source separation methods to determine the number of sources and/or identify the physical source signatures. It is shown that the assumed mixing model is only valid if each unit of the process gives equal weighting (all-pass filter) to all oscillatory components in its inputs. This is in contrast to the fact that each unit, in general, acts as a filter with non-uniform frequency response. Thus, the model can only facilitate correct identification of a source with a single frequency component, which is again unrealistic. To overcome this deficiency, an iterative post-processing algorithm that correctly identifies the physical source(s) is developed. An additional issue with the existing methods is that they lack a procedure to pre-screen non-oscillatory/noisy measurements which obscure the identification of oscillatory sources. In this regard, a pre-screening procedure is prescribed based on the notion of sparseness index to eliminate the noisy and non-oscillatory measurements from the data set used for analysis.Keywords: non-negative matrix factorization, PCA, source separation, plant-wide diagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15341685 Classification of Political Affiliations by Reduced Number of Features
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.Keywords: Politics, machine learning, feature selection, LIWC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23651684 Atomic Force Microscopy (AFM)Topographical Surface Characterization of Multilayer-Coated and Uncoated Carbide Inserts
Authors: Samy E. Oraby, Ayman M. Alaskari
Abstract:
In recent years, scanning probe atomic force microscopy SPM AFM has gained acceptance over a wide spectrum of research and science applications. Most fields focuses on physical, chemical, biological while less attention is devoted to manufacturing and machining aspects. The purpose of the current study is to assess the possible implementation of the SPM AFM features and its NanoScope software in general machining applications with special attention to the tribological aspects of cutting tool. The surface morphology of coated and uncoated as-received carbide inserts is examined, analyzed, and characterized through the determination of the appropriate scanning setting, the suitable data type imaging techniques and the most representative data analysis parameters using the MultiMode SPM AFM in contact mode. The NanoScope operating software is used to capture realtime three data types images: “Height", “Deflection" and “Friction". Three scan sizes are independently performed: 2, 6, and 12 μm with a 2.5 μm vertical range (Z). Offline mode analysis includes the determination of three functional topographical parameters: surface “Roughness", power spectral density “PSD" and “Section". The 12 μm scan size in association with “Height" imaging is found efficient to capture every tiny features and tribological aspects of the examined surface. Also, “Friction" analysis is found to produce a comprehensive explanation about the lateral characteristics of the scanned surface. Configuration of many surface defects and drawbacks has been precisely detected and analyzed.Keywords: SPM AFM contact mode, carbide inserts, scan size, surface defects, surface roughness, PSD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72701683 Human Verification in a Video Surveillance System Using Statistical Features
Authors: Sanpachai Huvanandana
Abstract:
A human verification system is presented in this paper. The system consists of several steps: background subtraction, thresholding, line connection, region growing, morphlogy, star skelatonization, feature extraction, feature matching, and decision making. The proposed system combines an advantage of star skeletonization and simple statistic features. A correlation matching and probability voting have been used for verification, followed by a logical operation in a decision making stage. The proposed system uses small number of features and the system reliability is convincing.Keywords: Human verification, object recognition, videounderstanding, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15051682 The Concentration Effects for the Adsorption Behavior of Heptyl Viologen Cation Radicals on Indium-Tin-Oxide Electrode Surfaces
Authors: Yusuke Ayato, Takashi Itahashi, Akiko Takatsu, Kenji Kato, Naoki Matsuda
Abstract:
In situ observation of absorption spectral change of heptil viologen cation radical (HV+.) was performed by slab optical waveguide (SOWG) spectroscopy utilizing indium-tin-oxide (ITO) electrodes. Synchronizing with electrochemical techniques, we observed the adsorption process of HV+.on the ITO electrode. In this study, we carried out the ITO-SOWG observations using KBr aqueous solution containing different concentration of HV to investigate the concentration dependent spectral change. A few specific absorption bands, which indicated HV+.existed as both monomer and dimer on ITO electrode surface with a monolayer or a few layers deposition, were observed in UV-visible region. The change in the peak position of the absorption spectra from adsorption species of HV+. were correlated with the concentration of HV as well as the electrode potential.Keywords: absorption phenomena, heptil viologen, indium-tin-oxide (ITO) electrode, in situ, slab optical waveguide(SOWG) spectroscopy,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15411681 Noise Performance of Millimeter-wave Silicon Based Mixed Tunneling Avalanche Transit Time(MITATT) Diode
Authors: Aritra Acharyya, Moumita Mukherjee, J. P. Banerjee
Abstract:
A generalized method for small-signal simulation of avalanche noise in Mixed Tunneling Avalanche Transit Time (MITATT) device is presented in this paper where the effect of series resistance is taken into account. The method is applied to a millimeter-wave Double Drift Region (DDR) MITATT device based on Silicon to obtain noise spectral density and noise measure as a function of frequency for different values of series resistance. It is found that noise measure of the device at the operating frequency (122 GHz) with input power density of 1010 Watt/m2 is about 35 dB for hypothetical parasitic series resistance of zero ohm (estimated junction temperature = 500 K). Results show that the noise measure increases as the value of parasitic resistance increases.Keywords: Noise Analysis, Silicon MITATT, Admittancecharacteristics, Noise spectral density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16071680 A New Internal Architecture Based on Feature Selection for Holonic Manufacturing System
Authors: Jihan Abdulazeez Ahmed, Adnan Mohsin Abdulazeez Brifcani
Abstract:
This paper suggests a new internal architecture of holon based on feature selection model using the combination of Bees Algorithm (BA) and Artificial Neural Network (ANN). BA is used to generate features while ANN is used as a classifier to evaluate the produced features. Proposed system is applied on the Wine dataset, the statistical result proves that the proposed system is effective and has the ability to choose informative features with high accuracy.Keywords: Artificial Neural Networks, Holonic Approach, Feature Selection, Bee Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20801679 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency
Authors: Fanqiang Kong, Chending Bian
Abstract:
In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.Keywords: Hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7701678 Multi-algorithmic Iris Authentication System
Authors: Hunny Mehrotra, Banshidhar Majhi, Phalguni Gupta
Abstract:
The paper proposes a novel technique for iris recognition using texture and phase features. Texture features are extracted on the normalized iris strip using Haar Wavelet while phase features are obtained using LOG Gabor Wavelet. The matching scores generated from individual modules are combined using sum of score technique. The system is tested on database obtained from Bath University and Indian Institute of Technology Kanpur and is giving an accuracy of 95.62% and 97.66% respectively. The FAR and FRR of the combined system is also reduced comparatively.Keywords: Fusion, Haar Wavelet, Iris, LOG Gabor Wavelet, Phase, Texture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17011677 Identification of Printed Punjabi Words and English Numerals Using Gabor Features
Authors: Rajneesh Rani, Renu Dhir, G. S. Lehal
Abstract:
Script identification is one of the challenging steps in the development of optical character recognition system for bilingual or multilingual documents. In this paper an attempt is made for identification of English numerals at word level from Punjabi documents by using Gabor features. The support vector machine (SVM) classifier with five fold cross validation is used to classify the word images. The results obtained are quite encouraging. Average accuracy with RBF kernel, Polynomial and Linear Kernel functions comes out to be greater than 99%.
Keywords: Script identification, gabor features, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21271676 Fuzzy Inference System Based Unhealthy Region Classification in Plant Leaf Image
Authors: K. Muthukannan, P. Latha
Abstract:
In addition to environmental parameters like rain, temperature diseases on crop is a major factor which affects production quality & quantity of crop yield. Hence disease management is a key issue in agriculture. For the management of disease, it needs to be detected at early stage. So, treat it properly & control spread of the disease. Now a day, it is possible to use the images of diseased leaf to detect the type of disease by using image processing techniques. This can be achieved by extracting features from the images which can be further used with classification algorithms or content based image retrieval systems. In this paper, color image is used to extract the features such as mean and standard deviation after the process of region cropping. The selected features are taken from the cropped image with different image size samples. Then, the extracted features are taken in to the account for classification using Fuzzy Inference System (FIS).Keywords: Image Cropping, Classification, Color, Fuzzy Rule, Feature Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888