Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32131
Noise Performance of Millimeter-wave Silicon Based Mixed Tunneling Avalanche Transit Time(MITATT) Diode

Authors: Aritra Acharyya, Moumita Mukherjee, J. P. Banerjee


A generalized method for small-signal simulation of avalanche noise in Mixed Tunneling Avalanche Transit Time (MITATT) device is presented in this paper where the effect of series resistance is taken into account. The method is applied to a millimeter-wave Double Drift Region (DDR) MITATT device based on Silicon to obtain noise spectral density and noise measure as a function of frequency for different values of series resistance. It is found that noise measure of the device at the operating frequency (122 GHz) with input power density of 1010 Watt/m2 is about 35 dB for hypothetical parasitic series resistance of zero ohm (estimated junction temperature = 500 K). Results show that the noise measure increases as the value of parasitic resistance increases.

Keywords: Noise Analysis, Silicon MITATT, Admittancecharacteristics, Noise spectral density.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472


[1] T. A. Midford and R. L. Bernick, "Millimeter Wave CW IMPATT diodes and Oscillators", IEEE Trans. Microwave Theory Tech., vol. 27, pp. 483-492, 1979.
[2] Y. Chang, J. M. Hellum, J. A. Paul and K. P. Weller, "Millimeter-Wave IMPATT Sources for Communication Applications", IEEE MTT-S International Microwave Symposium Digest, pp. 216-219, 1977.
[3] W. W. Gray, L. Kikushima, N. P. Morentc and R. J. Wagner, "Applying IMPATT Power Sources to Modern Microwave Systems". IEEE Journal of Solid-State Circuits, vol. 4, pp. 409-413, 1969.
[4] M. Mukherjee and N. Mazumder, "Effect of charge-bump on highfrequency characteristics of ╬▒-SiC based double drift ATT diodes at MM-wave window frequencies", IETE J. of Research, vol. 55, pp. 118- 127, 2009.
[5] G. N. Dash and S. P. Pati, "A generalized simulation method for MITATT-mode operation and studies on the influence of tunnel current on IMPATT properties", Semicond. Sci. Technology, vol. 7, pp. 222- 230, 1992.
[6] M. Mukherjee and N. Mazumder, "Comparison of photo sensitivity of Si and InP IMPATT diodes at 220 GHz", Proc. of IEEE International conference on Microelectronics, Electronics and Electronic Technologies (IEEE-MEET 2007), University of Zagreb, Croatia, pp. 72-77, 2007.
[7] J. P. Banerjee, S. P. Pati and S. K. Roy, "Computer simulation experiment on the mm-wave properties of InP double drift IMPATTs", Phys. Status Solidi, vol. 109, pp. 359-364, 1988.
[8] M. Mukherjee, S. Banerjee and J. P. Banerjee, "Dynamic characteristics of iii-v and iv-iv semiconductor based transit time devices in the terahertz regime: a comparative analysis", Terahertz Science and Technology, vol. 3, pp. 97-109, 2010.
[9] M. J. Bailey, "Heterojunction IMPATT diodes", IEEE Transactions on Electron Devices, vol. 39, issue 8, pp. 1829-1834, 1992.
[10] J. C. de Jaeger, R. Kozlowski, G. Salmer, "Expected performances of GaAlAs/GaAs double-velocity heterojunction impatt diodes", Electronics Letters, vol. 20, issue 19, pp. 803-804, 1984.
[11] J. K. Mishra, A. K. Panda, G. N. Dash, "An extremely low noise heterojunction IMPATT", IEEE Transactions on Electron Devices, vol. 44, issue 12, pp. 2143-2148 , 1997.
[12] A. S. Tager, "Current fluctuations in semiconductor (dielectric) under the conditions of impact ionosation and avalanche breakdown" Sov. Phys. Solid State, vol. 4, pp. 1919, 1965.
[13] M. E. Hines, "Noise theory of Read type avalanche diode", IEEE Trans. Electron Devices, vol. ED-13, pp. 57, 1966.
[14] H. K. Gummel and J. L. Blue, "A Small-Signal Theory of Avalanche Noise in IMPATT Diodes", IEEE Trans. Electron Devices, vol. ED-14, No. 9, pp. 569-580, 1967.
[15] H. A. Haus, H. Statz and R. A. Pucel, "Optimum noise measure of IMPATT diode", IEEE Trans. on MTT, vol. MTT-19, pp. 801, 1971.
[16] R. L. Kuvas, "Noise in IMPATT diodes Intrinsic properties", IEEE Trans. Electron Devices, vol. ED-19, pp. 220, 1972.
[17] G. N. Dash, J. K. Mishra and A. K. Panda, "Noise in Mixed Tunneling Avalanche Transit Time (MITATT) diodes", Solid-State Electronics, vol. 39, no. 10, pp. 1473-1479, 1996.
[18] S. K. Roy, J. P. Banerjee and S. P. Pati, "Computer methods for the dc field and carrier current profiles in impatt devices starting from the field extremum in the depletion layer", Proc. of NASECODE-I Conf. on Numerical Analysis of Semiconductor Devices (Dublin: Boole Press), pp. 266, 1979.
[19] S. K. Roy, J. P. Banerjee and S. P. Pati, "A computer analysis of the distribution of high frequency negative resistance in the depletion layers of impatt diodes", Proc. of NASECODE-IV Conf. on Numerical Analysis of Semiconductor Devices (Dublin: Boole Press), pp. 494, 1985.
[20] M. Mukherjee and J. P. Banerjee, "DDR Pulsed IMPATT Sources at MM-Wave Window Frequency: High-Power Operation Mode", International Journal of Advanced Science and Technology, vol. 19, pp. 1-11, 2010.
[21] M. Sridharan and S. K. Roy, "Computer studies on the widening of the avalanche zone and decrease on efficiency in silicon X-band sym. DDR", Electron Lett., vol. 14, pp. 635-637, 1978.
[22] M. Sridharan and S. K. Roy, "Effect of mobile space charge on the small signal admittance of silicon DDR", Solid State Electron, vol. 23, pp. 1001-1003, 1980.
[23] M. E. Elta, "The effect of mixed tunneling and avalanche breakdown on microwave transit-time diodes", Ph.D. dissertation, Electron Physics Lab., Univ. of Mich., Ann Arbor, MI, Tech. Rep, 1978.
[24] E. O. Kane, "Theory of tunneling", J. Appl. Phys., vol. 32, pp. 83-91, 1961.
[25] Canali, C., Ottaviani, G., and Quaranta, A. A., "Drift velocity of electrons and holes and associated anisotropic effects in silicon", J. Phys. Chem. Solids, vol. 32, pp. 1707-1720, 1971.
[26] D. L. Scharfetter and H. K. Gummel, "Large-Signal Analysis of a Silicon Read Diode Oscillator", IEEE Trans. on Electron Devices, vol. 16, pp. 64-77, 1969.
[27] ÔÇÿElectronic Archive: New Semiconductor Materials, Characteristics and Properties-,
[28] H. A. Haus and R. B. Adler, "Circuit Theory of Linear Noisy Networks", New York: Willy, 1959.
[29] J. F. Luy, A. Casel, W. Behr and E. Kasper, "A 90-GHz double-drift IMPATT diode made with Si MBE", IEEE Trans. Electron Devices, vol. 34, pp. 1084-1089, 1987.