Search results for: Multiresolution
24 Multiresolution Approach to Subpixel Registration by Linear Approximation of PSF
Authors: Erol Seke, Kemal Özkan
Abstract:
Linear approximation of point spread function (PSF) is a new method for determining subpixel translations between images. The problem with the actual algorithm is the inability of determining translations larger than 1 pixel. In this paper a multiresolution technique is proposed to deal with the problem. Its performance is evaluated by comparison with two other well known registration method. In the proposed technique the images are downsampled in order to have a wider view. Progressively decreasing the downsampling rate up to the initial resolution and using linear approximation technique at each step, the algorithm is able to determine translations of several pixels in subpixel levels.
Keywords: Point Spread Function, Subpixel translation, Superresolution, Multiresolution approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166323 Assessing Complexity of Neuronal Multiunit Activity by Information Theoretic Measure
Authors: Young-Seok Choi
Abstract:
This paper provides a quantitative measure of the time-varying multiunit neuronal spiking activity using an entropy based approach. To verify the status embedded in the neuronal activity of a population of neurons, the discrete wavelet transform (DWT) is used to isolate the inherent spiking activity of MUA. Due to the de-correlating property of DWT, the spiking activity would be preserved while reducing the non-spiking component. By evaluating the entropy of the wavelet coefficients of the de-noised MUA, a multiresolution Shannon entropy (MRSE) of the MUA signal is developed. The proposed entropy was tested in the analysis of both simulated noisy MUA and actual MUA recorded from cortex in rodent model. Simulation and experimental results demonstrate that the dynamics of a population can be quantified by using the proposed entropy.
Keywords: Discrete wavelet transform, Entropy, Multiresolution, Multiunit activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184422 Multiscale Structures and Their Evolution in a Screen Cylinder Wake
Authors: Azlin M. Azmi, T. Zhou, A. Rinoshika, L. Cheng
Abstract:
The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been educed to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multiresolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequencyf0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d> 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses atx/d =10 before being taken over by the large-scale structures (f0) further downstream.
Keywords: Turbulent structure, screen cylinder, vortex, wavelet multiresolution analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154921 Road Extraction Using Stationary Wavelet Transform
Authors: Somkait Udomhunsakul
Abstract:
In this paper, a novel road extraction method using Stationary Wavelet Transform is proposed. To detect road features from color aerial satellite imagery, Mexican hat Wavelet filters are used by applying the Stationary Wavelet Transform in a multiresolution, multi-scale, sense and forming the products of Wavelet coefficients at a different scales to locate and identify road features at a few scales. In addition, the shifting of road features locations is considered through multiple scales for robust road extraction in the asymmetry road feature profiles. From the experimental results, the proposed method leads to a useful technique to form the basis of road feature extraction. Also, the method is general and can be applied to other features in imagery.
Keywords: Road extraction, Multiresolution, Stationary Wavelet Transform, Multi-scale analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187720 Automatic 2D/2D Registration using Multiresolution Pyramid based Mutual Information in Image Guided Radiation Therapy
Authors: Jing Jia, Shanqing Huang, Fang Liu, Qiang Ren, Gui Li, Mengyun Cheng, Chufeng Jin, Yican Wu
Abstract:
Medical image registration is the key technology in image guided radiation therapy (IGRT) systems. On the basis of the previous work on our IGRT prototype with a biorthogonal x-ray imaging system, we described a method focused on the 2D/2D rigid-body registration using multiresolution pyramid based mutual information in this paper. Three key steps were involved in the method : firstly, four 2D images were obtained including two x-ray projection images and two digital reconstructed radiographies(DRRs ) as the input for the registration ; Secondly, each pair of the corresponding x-ray image and DRR image were matched using multiresolution pyramid based mutual information under the ITK registration framework ; Thirdly, we got the final couch offset through a coordinate transformation by calculating the translations acquired from the two pairs of the images. A simulation example of a parotid gland tumor case and a clinical example of an anthropomorphic head phantom were employed in the verification tests. In addition, the influence of different CT slice thickness were tested. The simulation results showed that the positioning errors were 0.068±0.070, 0.072±0.098, 0.154±0.176mm along three axes which were lateral, longitudinal and vertical. The clinical test indicated that the positioning errors of the planned isocenter were 0.066, 0.07, 2.06mm on average with a CT slice thickness of 2.5mm. It can be concluded that our method with its verified accuracy and robustness can be effectively used in IGRT systems for patient setup.
Keywords: 2D/2D registration, image guided radiation therapy, multi resolution pyramid, mutual information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198219 Wavelet based Image Registration Technique for Matching Dental x-rays
Authors: P. Ramprasad, H. C. Nagaraj, M. K. Parasuram
Abstract:
Image registration plays an important role in the diagnosis of dental pathologies such as dental caries, alveolar bone loss and periapical lesions etc. This paper presents a new wavelet based algorithm for registering noisy and poor contrast dental x-rays. Proposed algorithm has two stages. First stage is a preprocessing stage, removes the noise from the x-ray images. Gaussian filter has been used. Second stage is a geometric transformation stage. Proposed work uses two levels of affine transformation. Wavelet coefficients are correlated instead of gray values. Algorithm has been applied on number of pre and post RCT (Root canal treatment) periapical radiographs. Root Mean Square Error (RMSE) and Correlation coefficients (CC) are used for quantitative evaluation. Proposed technique outperforms conventional Multiresolution strategy based image registration technique and manual registration technique.Keywords: Diagnostic imaging, geometric transformation, image registration, multiresolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176218 Comparative Study of Fault Identification and Classification on EHV Lines Using Discrete Wavelet Transform and Fourier Transform Based ANN
Authors: K.Gayathri, N. Kumarappan
Abstract:
An appropriate method for fault identification and classification on extra high voltage transmission line using discrete wavelet transform is proposed in this paper. The sharp variations of the generated short circuit transient signals which are recorded at the sending end of the transmission line are adopted to identify the fault. The threshold values involve fault classification and these are done on the basis of the multiresolution analysis. A comparative study of the performance is also presented for Discrete Fourier Transform (DFT) based Artificial Neural Network (ANN) and Discrete Wavelet Transform (DWT). The results prove that the proposed method is an effective and efficient one in obtaining the accurate result within short duration of time by using Daubechies 4 and 9. Simulation of the power system is done using MATLAB.
Keywords: EHV transmission line, Fault identification and classification, Discrete wavelet transform, Multiresolution analysis, Artificial neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 245617 A Novel Multiresolution based Optimization Scheme for Robust Affine Parameter Estimation
Authors: J.Dinesh Peter
Abstract:
This paper describes a new method for affine parameter estimation between image sequences. Usually, the parameter estimation techniques can be done by least squares in a quadratic way. However, this technique can be sensitive to the presence of outliers. Therefore, parameter estimation techniques for various image processing applications are robust enough to withstand the influence of outliers. Progressively, some robust estimation functions demanding non-quadratic and perhaps non-convex potentials adopted from statistics literature have been used for solving these. Addressing the optimization of the error function in a factual framework for finding a global optimal solution, the minimization can begin with the convex estimator at the coarser level and gradually introduce nonconvexity i.e., from soft to hard redescending non-convex estimators when the iteration reaches finer level of multiresolution pyramid. Comparison has been made to find the performance of the results of proposed method with the results found individually using two different estimators.Keywords: Image Processing, Affine parameter estimation, Outliers, Robust Statistics, Robust M-estimators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145416 A Multiresolution Approach for Noised Texture Classification based on the Co-occurrence Matrix and First Order Statistics
Authors: M. Ben Othmen, M. Sayadi, F. Fnaiech
Abstract:
Wavelet transform provides several important characteristics which can be used in a texture analysis and classification. In this work, an efficient texture classification method, which combines concepts from wavelet and co-occurrence matrices, is presented. An Euclidian distance classifier is used to evaluate the various methods of classification. A comparative study is essential to determine the ideal method. Using this conjecture, we developed a novel feature set for texture classification and demonstrate its effectivenessKeywords: Classification, Wavelet, Co-occurrence, Euclidian Distance, Classifier, Texture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148115 A Parallel Quadtree Approach for Image Compression using Wavelets
Authors: Hamed Vahdat Nejad, Hossein Deldari
Abstract:
Wavelet transforms are multiresolution decompositions that can be used to analyze signals and images. Image compression is one of major applications of wavelet transforms in image processing. It is considered as one of the most powerful methods that provides a high compression ratio. However, its implementation is very time-consuming. At the other hand, parallel computing technologies are an efficient method for image compression using wavelets. In this paper, we propose a parallel wavelet compression algorithm based on quadtrees. We implement the algorithm using MatlabMPI (a parallel, message passing version of Matlab), and compute its isoefficiency function, and show that it is scalable. Our experimental results confirm the efficiency of the algorithm also.Keywords: Image compression, MPI, Parallel computing, Wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202414 Transient Energy and its Impact on Transmission Line Faults
Authors: Mamta Patel, R. N. Patel
Abstract:
Transmission and distribution lines are vital links between the generating unit and consumers. They are exposed to atmosphere, hence chances of occurrence of fault in transmission line is very high which has to be immediately taken care of in order to minimize damage caused by it. In this paper Discrete wavelet transform of voltage signals at the two ends of transmission lines have been analyzed. The transient energy of the detail information of level five is calculated for different fault conditions. It is observed that the variation of transient energy of healthy and faulted line can give important information which can be very useful in classifying and locating the fault.
Keywords: Wavelet, Discrete wavelet transform, Multiresolution analysis, Transient energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243613 New Iterative Algorithm for Improving Depth Resolution in Ionic Analysis: Effect of Iterations Number
Authors: N. Dahraoui, M. Boulakroune, D. Benatia
Abstract:
In this paper, the improvement by deconvolution of the depth resolution in Secondary Ion Mass Spectrometry (SIMS) analysis is considered. Indeed, we have developed a new Tikhonov- Miller deconvolution algorithm where a priori model of the solution is included. This is a denoisy and pre-deconvoluted signal obtained from: firstly, by the application of wavelet shrinkage algorithm, secondly by the introduction of the obtained denoisy signal in an iterative deconvolution algorithm. In particular, we have focused the light on the effect of the iterations number on the evolution of the deconvoluted signals. The SIMS profiles are multilayers of Boron in Silicon matrix.
Keywords: DRF, in-depth resolution, multiresolution deconvolution, SIMS, wavelet shrinkage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222012 Synthesis of Wavelet Filters using Wavelet Neural Networks
Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi
Abstract:
An application of Beta wavelet networks to synthesize pass-high and pass-low wavelet filters is investigated in this work. A Beta wavelet network is constructed using a parametric function called Beta function in order to resolve some nonlinear approximation problem. We combine the filter design theory with wavelet network approximation to synthesize perfect filter reconstruction. The order filter is given by the number of neurons in the hidden layer of the neural network. In this paper we use only the first derivative of Beta function to illustrate the proposed design procedures and exhibit its performance.Keywords: Beta wavelets, Wavenet, multiresolution analysis, perfect filter reconstruction, salient point detect, repeatability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166411 Detection of Power Quality Disturbances using Wavelet Transform
Authors: Sudipta Nath, Arindam Dey, Abhijit Chakrabarti
Abstract:
This paper presents features that characterize power quality disturbances from recorded voltage waveforms using wavelet transform. The discrete wavelet transform has been used to detect and analyze power quality disturbances. The disturbances of interest include sag, swell, outage and transient. A power system network has been simulated by Electromagnetic Transients Program. Voltage waveforms at strategic points have been obtained for analysis, which includes different power quality disturbances. Then wavelet has been chosen to perform feature extraction. The outputs of the feature extraction are the wavelet coefficients representing the power quality disturbance signal. Wavelet coefficients at different levels reveal the time localizing information about the variation of the signal.Keywords: Power quality, detection of disturbance, wavelet transform, multiresolution signal decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 342410 Curvelet Transform Based Two Class Motor Imagery Classification
Authors: Nebi Gedik
Abstract:
One of the important parts of the brain-computer interface (BCI) studies is the classification of motor imagery (MI) obtained by electroencephalography (EEG). The major goal is to provide non-muscular communication and control via assistive technologies to people with severe motor disorders so that they can communicate with the outside world. In this study, an EEG signal classification approach based on multiscale and multi-resolution transform method is presented. The proposed approach is used to decompose the EEG signal containing motor image information (right- and left-hand movement imagery). The decomposition process is performed using curvelet transform which is a multiscale and multiresolution analysis method, and the transform output was evaluated as feature data. The obtained feature set is subjected to feature selection process to obtain the most effective ones using t-test methods. SVM and k-NN algorithms are assigned for classification.
Keywords: motor imagery, EEG, curvelet transform, SVM, k-NN
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6209 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms
Authors: Nebi Gedik
Abstract:
One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).
Keywords: Wave atom transform, statistical features, multi-resolution representation, mammogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8828 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients
Authors: Subha D. Puthankattil, Paul K. Joseph
Abstract:
Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.
Keywords: EEG, Depression, Wavelet entropy, Approximate entropy, Relative Wavelet energy, Multiresolution decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36397 Hybrid Method Using Wavelets and Predictive Method for Compression of Speech Signal
Authors: Karima Siham Aoubid, Mohamed Boulemden
Abstract:
The development of the signal compression algorithms is having compressive progress. These algorithms are continuously improved by new tools and aim to reduce, an average, the number of bits necessary to the signal representation by means of minimizing the reconstruction error. The following article proposes the compression of Arabic speech signal by a hybrid method combining the wavelet transform and the linear prediction. The adopted approach rests, on one hand, on the original signal decomposition by ways of analysis filters, which is followed by the compression stage, and on the other hand, on the application of the order 5, as well as, the compression signal coefficients. The aim of this approach is the estimation of the predicted error, which will be coded and transmitted. The decoding operation is then used to reconstitute the original signal. Thus, the adequate choice of the bench of filters is useful to the transform in necessary to increase the compression rate and induce an impercevable distortion from an auditive point of view.Keywords: Compression, linear prediction analysis, multiresolution analysis, speech signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13376 Computing Fractal Dimension of Signals using Multiresolution Box-counting Method
Authors: B. S. Raghavendra, D. Narayana Dutt
Abstract:
In this paper, we have developed a method to compute fractal dimension (FD) of discrete time signals, in the time domain, by modifying the box-counting method. The size of the box is dependent on the sampling frequency of the signal. The number of boxes required to completely cover the signal are obtained at multiple time resolutions. The time resolutions are made coarse by decimating the signal. The loglog plot of total number of boxes required to cover the curve versus size of the box used appears to be a straight line, whose slope is taken as an estimate of FD of the signal. The results are provided to demonstrate the performance of the proposed method using parametric fractal signals. The estimation accuracy of the method is compared with that of Katz, Sevcik, and Higuchi methods. In addition, some properties of the FD are discussed.Keywords: Box-counting, Fractal dimension, Higuchi method, Katz method, Parametric fractal signals, Sevcik method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45945 A Novel Architecture for Wavelet based Image Fusion
Authors: Susmitha Vekkot, Pancham Shukla
Abstract:
In this paper, we focus on the fusion of images from different sources using multiresolution wavelet transforms. Based on reviews of popular image fusion techniques used in data analysis, different pixel and energy based methods are experimented. A novel architecture with a hybrid algorithm is proposed which applies pixel based maximum selection rule to low frequency approximations and filter mask based fusion to high frequency details of wavelet decomposition. The key feature of hybrid architecture is the combination of advantages of pixel and region based fusion in a single image which can help the development of sophisticated algorithms enhancing the edges and structural details. A Graphical User Interface is developed for image fusion to make the research outcomes available to the end user. To utilize GUI capabilities for medical, industrial and commercial activities without MATLAB installation, a standalone executable application is also developed using Matlab Compiler Runtime.Keywords: Filter mask, GUI, hybrid architecture, image fusion, Matlab Compiler Runtime, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23884 Efficient Feature-Based Registration for CT-M R Images Based on NSCT and PSO
Authors: Nemir Al-Azzawi, Harsa A. Mat Sakim, Wan Ahmed K. Wan Abdullah, Yasmin Mohd Yacob
Abstract:
Feature-based registration is an effective technique for clinical use, because it can greatly reduce computational costs. However, this technique, which estimates the transformation by using feature points extracted from two images, may cause misalignments. To handle with this limitation, we propose to extract the salient edges and extracted control points (CP) of medical images by using efficiency of multiresolution representation of data nonsubsampled contourlet transform (NSCT) that finds the best feature points. The MR images were first decomposed using the NSCT, and then Edge and CP were extracted from bandpass directional subband of NSCT coefficients and some proposed rules. After edge and CP extraction, mutual information was adopted for the registration of feature points and translation parameters are calculated by using particle swarm optimization (PSO). The experimental results showed that the proposed method produces totally accurate performance for registration medical CT-MR images.
Keywords: Feature-based registration, mutual information, nonsubsampled contourlet transform, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19703 Speaker Identification Using Admissible Wavelet Packet Based Decomposition
Authors: Mangesh S. Deshpande, Raghunath S. Holambe
Abstract:
Mel Frequency Cepstral Coefficient (MFCC) features are widely used as acoustic features for speech recognition as well as speaker recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolution in low frequency region, and a low resolution in high frequency region. This kind of processing is good for obtaining stable phonetic information, but not suitable for speaker features that are located in high frequency regions. The speaker individual information, which is non-uniformly distributed in the high frequencies, is equally important for speaker recognition. Based on this fact we proposed an admissible wavelet packet based filter structure for speaker identification. Multiresolution capabilities of wavelet packet transform are used to derive the new features. The proposed scheme differs from previous wavelet based works, mainly in designing the filter structure. Unlike others, the proposed filter structure does not follow Mel scale. The closed-set speaker identification experiments performed on the TIMIT database shows improved identification performance compared to other commonly used Mel scale based filter structures using wavelets.Keywords: Speaker identification, Wavelet transform, Feature extraction, MFCC, GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19822 Feature Based Dense Stereo Matching using Dynamic Programming and Color
Authors: Hajar Sadeghi, Payman Moallem, S. Amirhassn Monadjemi
Abstract:
This paper presents a new feature based dense stereo matching algorithm to obtain the dense disparity map via dynamic programming. After extraction of some proper features, we use some matching constraints such as epipolar line, disparity limit, ordering and limit of directional derivative of disparity as well. Also, a coarseto- fine multiresolution strategy is used to decrease the search space and therefore increase the accuracy and processing speed. The proposed method links the detected feature points into the chains and compares some of the feature points from different chains, to increase the matching speed. We also employ color stereo matching to increase the accuracy of the algorithm. Then after feature matching, we use the dynamic programming to obtain the dense disparity map. It differs from the classical DP methods in the stereo vision, since it employs sparse disparity map obtained from the feature based matching stage. The DP is also performed further on a scan line, between any matched two feature points on that scan line. Thus our algorithm is truly an optimization method. Our algorithm offers a good trade off in terms of accuracy and computational efficiency. Regarding the results of our experiments, the proposed algorithm increases the accuracy from 20 to 70%, and reduces the running time of the algorithm almost 70%.Keywords: Chain Correspondence, Color Stereo Matching, Dynamic Programming, Epipolar Line, Stereo Vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23491 Cellular Automata Based Robust Watermarking Architecture towards the VLSI Realization
Authors: V. H. Mankar, T. S. Das, S. K. Sarkar
Abstract:
In this paper, we have proposed a novel blind watermarking architecture towards its hardware implementation in VLSI. In order to facilitate this hardware realization, cellular automata (CA) concept is introduced. The CA has been already accepted as an attractive structure for VLSI implementation because of its modularity, parallelism, high performance and reliability. The hardware realizable multiresolution spread spectrum watermarking techniques are very few in numbers in spite of their best ever resiliency against signal impairments. This is because of the computational cost and complexity associated with their different filter banks and lifting techniques. The concept of cellular automata theory in order to form a new transform domain technique i.e. Cellular Automata Transform (CAT) have been incorporated. Since CA provides spreading sequences having very low cross-correlation properties, the CA based pseudorandom sequence generator is considered in the present work. Considering the watermarking technique as a digital communication process, an error control coding (ECC) must be incorporated in the data hiding schemes. Besides the hardware implementation of entire CA based data hiding technique, the individual blocks of the algorithm using CA provide the best result than that of some other methods irrespective of the hardware and software technique. The Cellular Automata Transform, CA based PN sequence generator, and CA ECC are the requisite blocks that are developed not only to meet the reliable hardware requirements but also for the basic spread spectrum watermarking features. The proposed algorithm shows statistical invisibility and resiliency against various common signal-processing operations. This algorithmic design utilizes the existing allocated bandwidth in the data transmission channel in a more efficient manner.
Keywords: Cellular automata, watermarking, error control coding, PN sequence, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067