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Abstract— Power Spectral Density (PSD) computed by taking 
the Fourier transform of auto-correlation functions (Wiener-
Khintchine Theorem) gives better result, in case of noisy data, as 
compared to the Periodogram approach. However, the computational 
complexity of Wiener-Khintchine approach is more than that of the
Periodogram approach. For the computation of short time Fourier
transform (STFT), this problem becomes even more prominent where
computation of PSD is required after every shift in the window under 
analysis. In this paper, recursive version of the Wiener-Khintchine
theorem has been derived by using the sliding DFT approach meant 
for computation of STFT. The computational complexity of the 
proposed recursive Wiener-Khintchine algorithm, for a window size 
of N, is O(N).
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I. INTRODUCTION

HE discrete Fourier transform (DFT), for transforming the
time signal into its frequency domain counterpart, is a
popular signal analysis tool in science and engineering.

Frequency and time are orthogonal. But some signals do have
frequency components that change with time for example
speech can be heard as having pitch that rises and falls over 
time. The solution to such problems is the Short Time Fourier
transform (STFT) proposed by Gabor in 1946 [1][2]. STFT 
evaluates the way frequency content changes with time [3].
Moving a fixed data length window over the time series
achieves this end. Each movement of the window corresponds 
to the passage of a unit time instant. Every time before
moving the window, the discrete Fourier transform is taken
through the fast Fourier transform (FFT) algorithm [3]. Thus,
the transform of each window corresponding to a time instant 
is available for analysis. However, it is well known that the
signal spectrum or the Power Spectral Density (PSD) 
computed through DFT does not give good results when the
signal is corrupted by noise.

A recursive sliding DFT algorithm [4][5] has been
proposed for the purpose of computing STFT efficiently. With
this method, the computational complexity for calculating
DFT of each window is O(N) as compared to O(N2) for 
standard DFT computation and O(N log2N) for FFT.

The method of calculating the PSD from the Fourier
transform of the autocorrelation functions, as proposed by

Wiener-Khintchine’s theorem (WKT), gives better estimate of
the PSD as compared to DFT for the case of noisy signals. 
The Wiener-Khintchine theorem relating the autocorrelation
functions r
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xx( ) to PSD is given by [6][7],
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with * indicating complex conjugate.
Numerical computation of autocorrelation is done by the

following equation,
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This implies that computation of PSD from autocorrelation
functions would be computationally expensive over 
computation of PSD from the signal through DFT
(Periodogram). With the advantage of WKT over 
periodogram approach for noisy data, it seems appropriate to
devise efficient algorithm for computing PSD through WKT.

In this paper, the recursive sliding window DFT algorithm
[4], [5] has been used for efficient computation of the PSD 
recursively from the autocorrelation functions.

After giving a short review of the recursive sliding DFT in
the next section, the recursive form of WKT has been derived
in Section III. A discussion on the computational complexity
of the proposed algorithm follows in Section IV. The paper
ends with some simulation results.

II. REVIEW OF THE SLIDING DFT

Consider a time series signal, 

1210 ,,,, xxxxnx        (4)n0for

Define a window  of length N, where N < K, within the

original time series  such that, 
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Also define another window of the same length

as except that it is one time sample shifted version.
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In the standard STFT algorithm, DFT  for k = 0, 1,···,

N –1, is computed for the first window  and then the 

window is moved ahead by one sample. The new window is
] and corresponding DFT is . This process continues

until all samples of the time series are exhausted.
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An efficient recursive-sliding window DFT for computing
the STFT has been derived by Jacobsen and Lyons [5]. The
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computational complexity of this approach is O(N) for a 
window size of N. It is given by,

         (7)
01
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III. RECURSIVE FORM OF WIENER-KHINTCHINE THEOREM

Define sxx(m) as the autocorrelation function of y1[n] (eq.
(5)) and rxx(m) as the autocorrelation function of y2[n] (eq.
(6)). Define Sxx(k) and Rxx(k) as the corresponding DFT’s of 
the autocorrelation functions. Thus the expressions, ignoring
the constant multiplier 1/N, can be written as follows.
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As the window moves ahead by one sample, the
autocorrelation would become,
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Since eq. (8) and eq. (9) have the same summands so, 
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Taking DFT on both the sides,
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][DFT 1 my DFT of previous window = Y1[k]    (11)

And,
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For real signals, , so ][][ 2
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Putting eq. (11) and (14) in eq. (10). 

)(Y]1[

)(Y]0[
*
2

/2
2

11

keNy

kykSkR

Nkj

xxxx         (15)

Thus, PSD of the current window can be computed in N

computations from the PSD of the previous window using the
sliding DFT in O(N).

IV. ALGORITHM

The algorithm for recursive computation of the PSD based 
on WKT is given below

• Set size of time window = N

• Initialization

– Set: a  =  first sample of the signal

– Pad N – 1 zeros at the start of the signal. 

– Define a vector: rxx[n] = 0, n = 0 to N –1 

– Set rxx[1] = a2

– Define a vector: Sxx[k] = a2, k = 0 to N –1 

– Calculate NkNjak /1expY1  for k = 0 

to N – 1 

• For n = 1 to K– 1 

– Define: xo = the first sample of the previous window

– Define: xN = the last sample of the current window

– Calculate Y2[k] = DFT of the new window using

Y1[k], calculated by using the SDFT 

– For k = 0 to N –1 

•Calculate

kexkxkSkR Nkj

Noxxxx
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– Update, for k = 0 to N – 1 

• Set Y1[k] = Y2[k]

• Set Sxx[k] = Rxx[k]

V. COMPLEXITY OF THE PROPOSED ALGORITHM

Assume that at some instant the PSD and the DFT of the
previous window are available. Using these past values, we
can compute the PSD of the current window, for real valued
signals, in 2N complex multiplications and 4N real 
multiplications which is equivalent to 3N complex
multiplications, out of which N will be used to calculate the
DFT of the current window only. The number of complex
additions required is 5N/2. It will need storage of 2N complex
numbers, N for complex values of DFT of previous window
and N for complex values of PSD of previous window. This is
the requirement for each recursion. The loop runs K– 1 times.
If we take computations during initialization into account, 
then 2N +1 real multiplications or equivalently 4)12( N

complex multiplications take place during initialization. So 
overall complexity (multiplications) of the algorithm will be,

N
N

NN
N

N 3
4
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Thus, the complexity for computation of the recursive PSD 
based on WKT for the complete data sequence is O(KN). This 
indicates a major improvement over the existing techniques.
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VI. SIMULATION RESULTS

The following autoregressive process of order 2 has been 
generated,

][]2[93.0]1[4.0][ nwnynyny

where w[n] is a white Gaussian process of zero mean and
unit variance. A measurement noise was added to the 
sequence thus generated resulting in an SNR of 8.8673 dB.
Figure 1 shows the comparison of using WKT versus

periodogram. The advantage of calculating PSD using
Wiener-Khintchine theorem over the PSD using FFT is
evident.
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Figure 1 Comparison of PSD through Periodogram and WKT for SNR = 8.8673 db. 
 It is clear that PSD of Wiener-Khintchine Theorem is better. 
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