@article{(Open Science Index):https://publications.waset.org/pdf/14581,
	  title     = {Improved Feature Processing for Iris Biometric Authentication System},
	  author    = {Somnath Dey and  Debasis Samanta},
	  country	= {},
	  institution	= {},
	  abstract     = {Iris-based biometric authentication is gaining importance
in recent times. Iris biometric processing however, is a complex
process and computationally very expensive. In the overall processing
of iris biometric in an iris-based biometric authentication system,
feature processing is an important task. In feature processing, we extract
iris features, which are ultimately used in matching. Since there
is a large number of iris features and computational time increases
as the number of features increases, it is therefore a challenge to
develop an iris processing system with as few as possible number of
features and at the same time without compromising the correctness.
In this paper, we address this issue and present an approach to feature
extraction and feature matching process. We apply Daubechies D4
wavelet with 4 levels to extract features from iris images. These
features are encoded with 2 bits by quantizing into 4 quantization
levels. With our proposed approach it is possible to represent an
iris template with only 304 bits, whereas existing approaches require
as many as 1024 bits. In addition, we assign different weights to
different iris region to compare two iris templates which significantly
increases the accuracy. Further, we match the iris template based on
a weighted similarity measure. Experimental results on several iris
databases substantiate the efficacy of our approach.},
	    journal   = {International Journal of Computer and Information Engineering},
	  volume    = {4},
	  number    = {3},
	  year      = {2010},
	  pages     = {500 - 507},
	  ee        = {https://publications.waset.org/pdf/14581},
	  url   	= {https://publications.waset.org/vol/39},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 39, 2010},
	}