
An efficient obstacle detection algorithm using
colour and texture

Chau Nguyen Viet, and Ian Marshall

Abstract—This paper presents a new classification algorithm using
colour and texture for obstacle detection. Colour information is
computationally cheap to learn and process. However in many cases,
colour alone does not provide enough information for classification.
Texture information can improve classification performance but usu-
ally comes at an expensive cost. Our algorithm uses both colour and
texture features but texture is only needed when colour is unreliable.
During the training stage, texture features are learned specifically
to improve the performance of a colour classifier. The algorithm
learns a set of simple texture features and only the most effective
features are used in the classification stage. Therefore our algorithm
has a very good classification rate while is still fast enough to run
on a limited computer platform. The proposed algorithm was tested
with a challenging outdoor image set. Test result shows the algorithm
achieves a much better trade-off between classification performance
and efficiency than a typical colour classifier.

Keywords—Colour, texture, classification, obstacle detection.

I. INTRODUCTION

Obstacle detection is an essential task of an autonomous
navigation system. For example, an autonomous mobile robot
needs to detect and locate any presence of obstacles in the
surrounding environment to operate safely. For this purpose,
visual sensing devices are often used. This work concerns a
vision system which has a single camera i.e. monocular vision
system. This visual system has a tasks of detecting obstacles
and recognising safe traversable areas in images taken from
a camera mounted on-board a mobile robot. Such system
often consists of two parts: a supervised learning algorithm
and a classifier. The learning algorithm learns the model of
traversable paths from a training image set, in which patches
of pixels of paths and obstacles are labelled by human. The
classifier then compares a patch of pixels in new images to the
learned model and decides if the patch is a path or an obstacle.
Our problem is a two classes classification problem [1], a pixel
patch can either be path or non-path. In this context, obstacle
detection and path recognition are identical task.

There are many visual features that can be used to model the
appearance of a traversable path. Colour is a popular choice
of feature for path recognition [2]–[5]. The main reason for
it’s popularity is that colour feature is a local property hence
computationally cheap and easy to learn. However a classifier
uses colour only has several shortcomings. First, a real world
path’s colour appearance is almost always non homogeneous.
Second, a path and obstacles on it may have similar colours.
Most seriously, colour of a surface changes dramatically when
the illumination condition changes, i.e. the colour constancy

C. Nguyen Viet, and I. Marshall are with the Computing Department,
Lancaster University, UK. Email: c.nguyenviet@lancaster.ac.uk

problem [3]. The relationship between colour appearance and
illumination is non-linear and very difficult to model. Other
visual features such as contrast, texture, geometrical structures,
shapes have been used in object recognition, image classifica-
tion, and image retrieval system [6]–[8]. But because of their
computationally expensive cost and application specific tuning,
these features have not been adopted widely in the mobile
robotics domain. Only recently, there are a number of attempts
to use texture in addition to colour for path recognition in an
on-board vision system [4], [9], [10]. Unlike colour, texture
feature the arrangement between pixels and is at least in theory
invariant to illumination. However in the mentioned works, the
benefit from adding texture features was either not reported or
unsubstantial.

In this paper, new method is proposed to combine colour
and texture for the task of obstacle detection. During training,
instead of learning texture for a separate classifier, the texture
features are leaned specifically to enhance the performance
of a colour classifier. Instead of learning texture models
from all training samples, the method learns texture of the
image samples that the colour classifier fails to recognise. The
learning algorithm only selects the best texture features for
classification from a subset of training samples. Both colour
and texture features are modeled using the histogram method.
In classification stage, the colour feature is used first. The
texture features are consulted only when the colour classifier
can not produce a decision with high confidence hence our
algorithm is very efficient. In most cases, the proposed al-
gorithm uses colour feature only so the average run-time to
classify a sample is very fast. All textural features are simple
enough for real time running on an on-board system.

The next section describes how colour and texture features
are learned independently for classification. Section III ex-
plains how texture features are learned specifically to improve
a colour classifier and the combined features classifier. Eval-
uation test result on a set of real out-door images is reported
in section IV. Section V summarises the paper.

II. LEARNING COLOUR AND TEXTURE FEATURES USING
HISTOGRAMS

A. Colour feature

Colour is a popular choice of feature for image segmentation
and object recognition. Colour information is readily available
as input from a colour camera so no extra processing is
required. Colour of a pixel is represented as a vector in the Red
, Green, Blue (RGB) colour space or Hue, Saturation, Value
(HSV). Real world surfaces often have more than a single

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2756International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

94
5.

pd
f



Fig. 1. Examples of the image set

(a) A typical example of the path (b) An image sample taken in the shade

(c) A path with a different appearance (d) Path and obstacles with similar ap-
pearance

colour e.g. in Fig 1 the path has parts that are either white,
pink, gray, or black. To learn the colour appearance of a real
world surface, the histogram method is often used. A colour
histogram contains a fixed number of bins and divides the
colour space into regular regions. Each bin of a histogram of
a pixel patch is the count of pixels in the patch whose colour
falls in the region defined by that bin. A normalised histogram
H approximates the distribution of colours in an image patch
P, each bin in H is calculated by

Hi = ni/N (1)

where ni is the number of pixels whose colour falls into the
region defined by bin i and N is the total number of pixels
in P. When histogram is used for classification, during the
training stage, a set of model histograms of a class is learned.
In classification stage, a sample histogram is compared with
the model histograms. The sample’s class is assigned with the
best matched model’s class. For histogram matching, there
are different ways of measuring the distance or similarity
between two histograms: general distance measurements such
as Euclid, and Manhattan distance, or statistical test such as the
Chi square test. The histogram intersection method was used
which is computationally efficient. The intersection method
calculates the sum of overlapped areas between two histograms
s and m:

M(s,m) =
∑

i

min(si,mi) (2)

in which s and m are model and sample histogram, si is
the value of bin i in s. No complex operation but an adding
and comparison is needed. The greater and closer to one the
intersection value is the more similar the two histograms are.

For obstacle detection in an autonomous navigation appli-
cation, the training algorithm often can only learn the model

of known traversable paths. Because the presence and type
of obstacles are unknown prior to operation, them can not
be modelled in the training stage. During classification stage,
image samples from an on-board camera are compared to
the learned path’s models. A sample is classified as path
if it is similar enough to a path’s model. In this case, if
M(s,m) is greater than a constant threshold then the sample
patch is labelled as path. The threshold value is crucial and
often determined by the experimental method. If it is set too
high, the classifier will label a lot of traversable samples as
obstacles. If it is set too low, obstacles will be misclassified
as path. The curves in Fig 3 demonstrates the effect of
varying this threshold. As the threshold decreases, both the
path detection rate and obstacle error rate increases.

B. Texture features

Although there is no formal definition of texture, the texture
of a visual surface can be thought of as spatial distribution
of intensity/colour variations. There are several approaches
to capture texture in digital images: statistical methods [11],
filter banks [12], [13], local pixel distribution [14]. A few
comparative studies on the differences between these ap-
proaches have been conducted [14]–[16]. Most of these studies
concluded that the performance of a texture approach is very
application dependent. There is no clear best texture capturing
method and non of the modern approaches outperforms the
simple co-occurrence matrix developed three decades ago [11].
However, a conclusion can be made that the performance
of a particular approach depends on the complexity of its
implementation. For instance, in a texton filter based approach
to texture classification [17], the performance depends on
the number of textons is used. In the case of co-occurrence
matrix, the performance depends on the number of gray levels,
displacement sets are used.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2757International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

94
5.

pd
f



In this study, texture is used to improve the performance
of a colour based classifier but with a consideration of
computational speed and memory requirement. A good trade-
off between performance improvement and added complexity
is desired. For this reason, two texture learning methods
were chosen: the Local Binary Pattern (LBP) method [14]
and a statistical method using 8 histograms of the intensity
difference between two pixels at 2, 4, 6, and 8 pixels apart
at horizontal and vertical directions. These two methods are
significantly less complex than other texture methods.

The LBP contains local intensity pattern of a pixel. The
LBP of pixel n with intensity x is defined as:

lbp(n) =
∑

i=1..8

2bi(x−xi)

bi(x) =

{
1 if x ≥ 0,
0 if x < 0.

where x1..8 are the intensity values of the 8 pixels neighbour-
ing n. A LBP has a range from 1 to 512, each value represents
an unique local pattern of a pixel. To accommodate this
feature, the local contrast was used which is the total sum of
differences between a pixel and its intermediate neighbours. To
capture texture information at larger scales, the DIFFX, DIFFY
histograms described in [14] were used. The variation in
intensity of pixels at four different intervals and two directions
were captured. The histogram method described previously is
again used to model texture features. A histogram of 512 bins
is used for the LBP. The LBP is a categorical variable so
there can not be any bin grouping. The local contrast and each
of the DFFX, DIFFY histograms has 16 bins. The matching
and classification method for texture histograms is identical to
colour histograms. Each histogram model has an associated
threshold. Because more than one histogram is needed to
describe an image patch, when two image patches are matched,
a mechanism is needed to combine each histogram matching
value. For simplicity, the average sum of each histogram
matching value is used.

III. COMBINING COLOUR AND TEXTURE FEATURES FOR
CLASSIFICATION

A. Partitioning training set using colour histograms

From initial tests of the colour based classifier, it was
found that the average performance was relatively good. The
colour information is rich enough in most cases. Classification
errors arise when the sample images were taken under bad
illumination condition i.e. under or over exposure in Fig 1(b) ,
when there were obstacles with very similar colour appearance
to the path (even to a human eye) in Fig 1(d). It was noted
that extracting texture features is several magnitude more com-
plex than extracting colour feature. From these observations,
algorithm was built that uses colour as the primary feature
and only consider texture feature in special cases where it is
difficult to use colour to discriminate. Instead of having one
threshold for each model colour histogram, two thresholds are
learned. One high threshold is used to determine if a sample
is matched with a model, one low threshold used to determine

if it is not. If the intersection value falls in between these two
thresholds, the texture feature is used. The samples that fall
in this regions are the difficult cases for the colour classifier.

The colour model learning procedure works as follow. A set
of colour histograms of a path is extracted from the training
images. This set usually has a large number of histograms
and a smaller set of representative histograms is needed. To
find this set, a clustering algorithm is applied to the training
set and histograms belong to the same clusters were merged
into one model histogram. The popular K-mean clustering [1]
was adopted. K-mean clustering is a simple iterative algorithm
that minimises the sum of distances between data points in
a cluster according to a distance measurement. In K-mean
clustering, the user has to specify the desired number of
clusters k. Equation 2 is used as the distance measurement.
Because the intersection value M(s,m) measures the simi-
larity between two histograms, to calculate the distance d :
d(s,m) = 1 − M(s,m). After the clustering has finished,
histograms in each cluster are merged by:

Hm(x) =
∑

i=1..n

Hi(x)/n

where H1..n are the histograms in the cluster and Hi(x) is the
value of bin x in Hi.

Next, the non-path histograms were classified into k groups
using the k representative colour histograms. The training
set was divided into k subsets, each contains both path and
non-path samples. Within a subset, all samples have similar
colour appearance since they are all matched to one colour
histogram. Each of the k representative colour histograms is
associated with two thresholds high and low. The thresholds
value are controlled globally by setting the percentage of path
and non-path histograms in a training subset would match
the representative colour histogram. For example, the high
threshold can be set so a model colour histogram matches 95%
of the path histograms belonging to the same cluster with the
model, and the low threshold so that model will match all
path histograms but also match a larger number of non-path
histograms.

Fig 2 demonstrates how a colour model histogram sepa-
rates the data. Fig 2(a) is a histogram of intersection values
(homogeneity measurements) from path data points in a cluster
to the model histogram defining the cluster. The data points
were taken from real images. Comparing this histogram to
the histogram in Fig 2(b), we can see that the majority of
path data points have higher homogeneity measurement than
non-path data points as expected. All points with homogeneity
greater than 2.7 are path. There are some path points that have
homogeneity value as low as 2.4, which is lower than most of
non-path points. These points should be treated as outliers.
The overlapping area between two histograms is relatively
small, however the biggest column in each histogram is next
to each other. This means that if one threshold is used to
separate the two classes, two problems occur. One, 100%
correct classification is impossible. The best threshold to use
in this case is 2.65 which will give a overall classification
rate of about 85%. Second, the performance of the classifier
is very sensitive to the threshold value. When using the best

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2758International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

94
5.

pd
f



Fig. 2. Histogram of distances to a path model

(a) Histogram of homogeneities from path points

(b) Histogram of homogeneities from non-path points

threshold learned from the training data, even if it is very close
to the best threshold for the testing data, the performance on
training and unknown testing data can be very different. A
good solution is to use two thresholds to separates the data
points into three parts: path, non-path and uncertain. A good
choice of these two thresholds in this example is 2.6 and 2.75,
all points below 2.6 are non-path , all points above 2.75 are
paths. Texture features is used to classify uncertain points in
between these thresholds.

B. Texture features selection and learning

In the proposed algorithm, each training subset has a model
features from one texture method. During training stage both
the LBP with contrast histograms and eight absolute difference
histograms are learned. However texture histograms from only
one method is saved and used in the classification stage. All
texture features were not used for efficiency reason. The LBP
with contrast and absolute difference histograms method both
have similar computation and memory requirement with the
former method slightly more demanding. The learning algo-
rithm selects the texture method with the better classification
error rate. First, it searches for the minimum threshold value
that would recognise a fixed percentage of the path samples.

The error rates of the two texture methods with the found
thresholds are compared and the texture method with lower
error rate is selected. Obviously one could use two thresholds
for texture features to divide the data set the same way as
colour and use more features to classify the uncertain area.
From experiences, using both methods for classification with
an additional mechanism to resolve potential conflicts does not
improve classification rate of while doubling up memory usage
and computation load. By training more features on a small
data set , the chance of the classifier becomes over-fitting to
the training set decreases.

C. Classification using colour and texture

During classification stage, the algorithm maps a pixel patch
of unknown class label to either path or non-path. A patch is
labelled as path if it’s colour histogram is matched with any of
the k colour histograms saved from the learning stage using the
high threshold. If non of the model histograms matches with
the sample, the algorithm iterates through the k models again.
This time the intersection value between the sample and the
model colour histogram is compared with the low threshold.
If a matched model is found, the sample’s texture histogram is
compared with the model’s texture histograms. A pseudo-code
of the algorithm is listed below

for i = 1 to k do
if M(sc,mc,i) > high thresholdi then

s is path
return

end if
end for
for i = 1 to k do

if M(sc,mc,i) > low thresholdi AND M(st,mt, i) >
texture thresholdi then

s is path
return

end if
end for
s is non path.

sc st are the sample’s colour and texture histogram, mc,i and
mc,t are colour and texture histogram of the ith model.

IV. EXPERIMENTAL TEST AND EVALUATION

A set of outdoor images were collected from a campus path
at Lancaster University, Fig 1. shows some of the samples.
The pictures were taken at different times and illumination
conditions. Many potential obstacles were tried , also borders
between the path and another type of terrains e.g. grass. Even
though those pictures were taken from the same surface type,
there are enough variations to make the model learning and
classification task challenging. For example, Fig 1(a) is an
image taken in normal bright condition, while Fig 1(b) is a
sample taken in a shade and the path looks very different,
Fig 1(d) is an instance where the path and obstacles have
very similar visual appearances. One hundred images were
labelled manually to path and obstacle regions. The image set
was divided into training and testing set. The training set has
20 images and testing set has 80 images. The reason why the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2759International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

94
5.

pd
f



Fig. 3. ROC curves of colour classifiers. ’.’ k = 5 , ’-’ k = 10 , ’*’ k = 20
, ’+’ k = 100

Fig. 4. ROC curves of colour and texture combined classifiers. ’.’ k = 5 ,
’-’ k = 10 , ’*’ k = 20 , ’+’ k = 100 , ’o’ colour only k=100

training set has much less samples than the testing is because
in a robot application, the number of training images is often
limited since collecting and labelling images takes time. The
ability to generalise is essential. The algorithm should be
tested with a small set of training samples.

A. Experiment results and discussion

The classification algorithm using colour only were tested
first. Each image was divided into non overlapping window of
20x20 pixels. Several different values of k, number of models,
were tried. Fig 3 shows the ROC (Relative Operating Charac-
teristic) curves of colour classifier with k = 5, 10, 20, 100. For
a two classes classification problem, the ROC curve describes
the performance better than an average error curve. The figure
shows that using a large number of model histograms k yields
better performance. To detect 90%r of the path patches, a

TABLE I
RUN-TIME OF CLASSIFIERS IN SECONDS

Avg Max Std
C only k = 100 0.16 0.21 0. 05
C and T k = 20 0.07 0.19 0.09

classifier using five models wrongly classifies almost 30% of
non-path patches, using 20 models the error rate is around
20% and when using 100 models the error rate is only 15%.
At this level of path recognition, the error rate and the number
of models used have an almost linear relationship.

The ROC curves of the classifier using both colour and
texture is showed in Fig 4. The same set of k values was used
as the colour classifier. Similar to the colour only method,
the performance of this classifier depends on the number of
models used. However the rate of change in performance
against the number of models is different. When k = 5 the
performance of the combined features classifier is actually
slightly worse than colour only classifier. One plausible expla-
nation is that with a small number of k, each training subset
contains largely dissimilar texture patches. As our algorithm
uses one texture model for each training subset, clustered by
the colour histograms, the texture classifier becomes unreliable
and can make the combined classifier worse. This explanation
is backed up with the significant improvement of performance
when using bigger k. With k = 20 the colour and texture
classifiers ROC curve is almost identical with the ROC curve
of colour only classifier with k = 100 and is much better
than colour only with the same k. Increasing k from 20 to
100 further improves the classifier but with a smaller gain in
performance than from 10 to 20.

The run-time of colour classifier with 100 models and
colour and texture classifier with 10 models was tested on
a Pentium III PC. Table I contains the classifiers’ run-time
statistics of processing a 320x240 image over a set of 80
images. In this configuration, the classifier using both colour
and texture features has better run-time on average and in the
worst case scenario than classifier using colour only. Another
test was done for the combined features classifier on a 200Mhz
Gumstix mini computer [18]. On this platform the average
time to process an image is 0.22 seconds or 5Hz. Implementing
the colour classifier with 100 learned models on the Gumstix
was not possible due to memory restriction.

B. Algorithm sensitivity over training set

One factor that often affect the performance of a classifi-
cation algorithm is the quality of the training set. A learning
algorithm can only model the variations that are presented
in the training set. Ideally, the training set should be a
representative subset of the real population. In practice this
is very difficult to achieve and one can only try to use the
biggest available training set. However even with a large
training set, it is not known if it is a good representation
of the real population. Because of the difficulty in selecting
a good training set, one important aspect of a classification
algorithm is how sensitive it is to different training sets. A
good supervised algorithm should learn all variations in the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2760International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

94
5.

pd
f



Fig. 5. Classification performances with different training sets. K = 5,20 and
100

training set without over-fitting. Given a set of labelled data,
the algorithm should be test with different pairs of training and
testing sets. Ten training sets was randomly selected and tested
the classification with k = 5, 20, 100. The performances are
plotted in Fig 5. The average performance of the classifier with
k = 20 is significantly higher than k = 5, while k = 100 is
only slightly better than k = 20. The variation in performance
between different training sets is smaller when k is bigger.
The range of performances with k = 20, the recommended
value for k, is less than 7%, with the worst case still better
than 80%. This is an indication that the algorithm is resilient
to changes in the training sets.

V. CONCLUSION

An efficient classification algorithm for obstacle detection
that combines colour and texture features were presented.
The algorithm achieves a good trade off between performance
and efficiency. A feature learning method was described. The
learning method selected from a set of texture features the best
features that can improve a colour classifiers performance. By
using the complex texture features only when the basic colour
classifier fails, our algorithm does not waste any computational
resource for extracting texture in most cases. It was concluded
that by utilising both colour and texture features, the algorithm
achieves a good classification rate while is still simple enough
to run on a mini computer platform suitable for outdoor robots.
There are few cases that the algorithm fails to classify, but
these cases are difficult even for human. Additional sensor
such as sonars or bump sensors can be used to resolve these
cases.

REFERENCES

[1] P. E. Richard O.Duda and D. G.Stork, Pattern Classification. Inter-
Science, 2001.

[2] I. Ulrich and I. R. NourbakhshLo, “Appearance-based obstacle detection
with monocular color vision,” in AAAI/IAAI, 2000, pp. 866–871.

[3] M. Sridharan and P. Stone, “Color learning and illumination invariance
on mobile robots: A survey,” Robotics and Autonomous Systems, vol. 57,
no. 6-7, pp. 629 – 644, 2009.

[4] L. Lorigo, R. Brooks, and W. Grimsou, “Visually-guided obstacle avoid-
ance in unstructured environments,” in Intelligent Robots and Systems,
1997. IROS ’97., Proceedings of the 1997 IEEE/RSJ International
Conference on, vol. 1, Grenoble, France, Sep. 1997, pp. 373–379.

[5] T. S. team, “Stanley : The robot that won the darpa grand challenge,”
Stanford University, Tech. Rep., 2005.

[6] S. Belongie, C. Carson, H. Greenspan, and J. Malik, “Color- and texture-
based image segmentation using em and its application to content-based
image retrieval,” iccv, vol. 00, p. 675, 1998.

[7] Y.-C. Cheng and S.-Y. Chen, “Image classification using color, texture
and regions,” Image and Vision Computing, vol. 21, no. 9, pp. 759–776,
Sep. 2003.

[8] D. Cremers, M. Rousson, and R. Deriche, “A review of statistical
approaches to level set segmentation: Integrating color, texture, motion
and shape,” International Journal of Computer Vision, vol. 72, no. 2,
pp. 195–215, Apr. 2007.

[9] M. Shneier, T. Chang, T. Hong, W. Shackleford, R. Bostelman, and J. Al-
bus, “Learning traversability models for autonomous mobile vehicles,”
Autonomous Robots, vol. 24, no. 1, pp. 69–86, Jan. 2008.

[10] J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance
using monocular vision and reinforcement learning,” in ICML ’05:
Proceedings of the 22nd international conference on Machine learning.
New York, NY, USA: ACM Press, 2005, pp. 593–600.

[11] R. Haralick, “Statistical and structural approaches to texture,” Proceed-
ings of the IEEE, vol. 67, no. 5, pp. 786–804, May 1979.

[12] T. P. Weldon, W. E. Higgins, and D. F. Dunn, “Efficient gabor filter
design for texture segmentation,” Pattern Recognition, vol. 29, no. 12,
pp. 2005–2015, Dec. 1996.

[13] M. Unser, “Texture classification and segmentation using wavelet
frames,” Image Processing, IEEE Transactions on, vol. 4, no. 11, pp.
1549–1560, Nov 1995.

[14] T. Ojala, M. Pietikinen, and D. Harwood, “A comparative study of
texture measures with classification based on featured distributions,”
Pattern Recognition, vol. 29, no. 1, pp. 51–59, Jan. 1996.

[15] S. Grigorescu, N. Petkov, and P. Kruizinga, “Comparison of texture
features based on gabor filters,” Image Processing, IEEE Transactions
on, vol. 11, no. 10, pp. 1160–1167, Oct 2002.

[16] T. Randen and J. Husoy, “Filtering for texture classification: a compar-
ative study,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 21, no. 4, pp. 291–310, Apr 1999.

[17] T. Leung and J. Malik, “Representing and recognizing the visual
appearance of materials using three-dimensional textons,” Int. J. Comput.
Vision, vol. 43, no. 1, pp. 29–44, 2001.

[18] “http://www.gumstix.org.”

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2761International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

94
5.

pd
f




