Search results for: Non-linear Schema Theorem
1096 Exact Pfaffian and N-Soliton Solutions to a (3+1)-Dimensional Generalized Integrable Nonlinear Partial Differential Equations
Authors: Magdy G. Asaad
Abstract:
The objective of this paper is to use the Pfaffian technique to construct different classes of exact Pfaffian solutions and N-soliton solutions to some of the generalized integrable nonlinear partial differential equations in (3+1) dimensions. In this paper, I will show that the Pfaffian solutions to the nonlinear PDEs are nothing but Pfaffian identities. Solitons are among the most beneficial solutions for science and technology, from ocean waves to transmission of information through optical fibers or energy transport along protein molecules. The existence of multi-solitons, especially three-soliton solutions, is essential for information technology: it makes possible undisturbed simultaneous propagation of many pulses in both directions.Keywords: Bilinear operator, G-BKP equation, Integrable nonlinear PDEs, Jimbo-Miwa equation, Ma-Fan equation, N-soliton solutions, Pfaffian solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20941095 Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method
Authors: Sachin Bhalekar, Varsha Daftardar-Gejji
Abstract:
In the present paper, we present a modification of the New Iterative Method (NIM) proposed by Daftardar-Gejji and Jafari [J. Math. Anal. Appl. 2006;316:753–763] and use it for solving systems of nonlinear functional equations. This modification yields a series with faster convergence. Illustrative examples are presented to demonstrate the method.Keywords: Caputo fractional derivative, System of nonlinear functional equations, Revised new iterative method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23371094 An Efficient Computational Algorithm for Solving the Nonlinear Lane-Emden Type Equations
Authors: Gholamreza Hojjati, Kourosh Parand
Abstract:
In this paper we propose a class of second derivative multistep methods for solving some well-known classes of Lane- Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. These methods, which have good stability and accuracy properties, are useful in deal with stiff ODEs. We show superiority of these methods by applying them on the some famous Lane-Emden type equations.
Keywords: Lane-Emden type equations, nonlinear ODE, stiff problems, multistep methods, astrophysics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31801093 Stability and HOPF Bifurcation Analysis in a Stage-structured Predator-prey system with Two Time Delays
Authors: Yongkun Li, Meng Hu
Abstract:
A stage-structured predator-prey system with two time delays is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated and the existence of Hopf bifurcations is established. Formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results. Based on the global Hopf bifurcation theorem for general functional differential equations, the global existence of periodic solutions is established.
Keywords: Predator-prey system, stage structure, time delay, HOPF bifurcation, periodic solution, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15691092 An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18431091 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides
Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz
Abstract:
This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.
Keywords: Nonlinear optics, propagation equation, plasmonic waveguide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12991090 Pushover Analysis of Short Structures
Authors: M.O. Makhmalbaf, M. GhanooniBagha, M.A. Tutunchian, M. Zabihi Samani
Abstract:
In this paper first, Two buildings have been modeled and then analyzed using nonlinear static analysis method under two different conditions in Nonlinear SAP 2000 software. In the first condition the interaction of soil adjacent to the walls of basement are ignored while in the second case this interaction have been modeled using Gap elements of nonlinear SAP2000 software. Finally, comparing the results of two models, the effects of soil-structure on period, target point displacement, internal forces, shape deformations and base shears have been studied. According to the results, this interaction has always increased the base shear of buildings, decreased the period of structure and target point displacement, and often decreased the internal forces and displacements.Keywords: Seismic Rehabilitation, Soil-Structure Interaction, Short Structure, Nonlinear Static Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19521089 An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input
Authors: Toshinori Nawata, Hitoshi Takata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented Automatic Choosing Control, NonlinearControl, Genetic Algorithm, Hamiltonian, Lyapunovfunction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14411088 On the Robust Stability of Homogeneous Perturbed Large-Scale Bilinear Systems with Time Delays and Constrained Inputs
Authors: Chien-Hua Lee, Cheng-Yi Chen
Abstract:
The stability test problem for homogeneous large-scale perturbed bilinear time-delay systems subjected to constrained inputs is considered in this paper. Both nonlinear uncertainties and interval systems are discussed. By utilizing the Lyapunove equation approach associated with linear algebraic techniques, several delay-independent criteria are presented to guarantee the robust stability of the overall systems. The main feature of the presented results is that although the Lyapunov stability theorem is used, they do not involve any Lyapunov equation which may be unsolvable. Furthermore, it is seen the proposed schemes can be applied to solve the stability analysis problem of large-scale time-delay systems.
Keywords: homogeneous bilinear system, constrained input, time-delay, uncertainty, transient response, decay rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16091087 A Game-Based Product Modelling Environment for Non-Engineer
Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige
Abstract:
In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.
Keywords: Game-based learning, knowledge based engineering, product modelling, design automation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7421086 Explicit Feedback Linearization of Magnetic Levitation System
Authors: Bhawna Tandon, Shiv Narayan, Jagdish Kumar
Abstract:
This study proposes the transformation of nonlinear Magnetic Levitation System into linear one, via state and feedback transformations using explicit algorithm. This algorithm allows computing explicitly the linearizing state coordinates and feedback for any nonlinear control system, which is feedback linearizable, without solving the Partial Differential Equations. The algorithm is performed using a maximum of N-1 steps where N being the dimension of the system.
Keywords: Explicit Algorithm, Feedback Linearization, Nonlinear control, Magnetic Levitation System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29741085 Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap
Authors: Jaroslav Krutil, František Pochylý, Simona Fialová
Abstract:
The article presents two mathematical models of the interaction between a rotating shaft and an incompressible fluid. The mathematical model includes both the journal bearings and the axially traversed hydrodynamic sealing gaps of hydraulic machines. A method is shown for the identification of additional effects of the fluid acting on the rotor of the machine, both for a linear and a nonlinear model. The interaction is expressed by matrices of mass, stiffness and damping.Keywords: CFD modeling, hydrodynamic gap, matrices of mass, stiffness and damping, nonlinear mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18411084 Existence of Periodic Solution for p-Laplacian Neutral Rayleigh Equation with Sign-variable Coefficient of Non Linear Term
Authors: Aomar Anane, Omar Chakrone, Loubna Moutaouekkil
Abstract:
As p-Laplacian equations have been widely applied in field of the fluid mechanics and nonlinear elastic mechanics, it is necessary to investigate the periodic solutions of functional differential equations involving the scalar p-Laplacian. By using Mawhin’s continuation theorem, we study the existence of periodic solutions for p-Laplacian neutral Rayleigh equation (ϕp(x(t)−c(t)x(t − r))) + f(x(t)) + g1(x(t − τ1(t, |x|∞))) + β(t)g2(x(t − τ2(t, |x|∞))) = e(t), It is meaningful that the functions c(t) and β(t) are allowed to change signs in this paper, which are different from the corresponding ones of known literature.
Keywords: periodic solution, neutral Rayleigh equation, variable sign, Deviating argument, p-Laplacian, Mawhin’s continuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13791083 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.
Keywords: Grey relational degree, multiple linear regression, membership function, nonlinear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14081082 New Delay-dependent Stability Conditions for Neutral Systems with Nonlinear Perturbations
Authors: Lianglin Xiong, Xiuyong Ding, Shouming Zhong
Abstract:
In this paper, the problem of asymptotical stability of neutral systems with nonlinear perturbations is investigated. Based on a class of novel augment Lyapunov functionals which contain freeweighting matrices, some new delay-dependent asymptotical stability criteria are formulated in terms of linear matrix inequalities (LMIs) by using new inequality analysis technique. Numerical examples are given to demonstrate the derived condition are much less conservative than those given in the literature.
Keywords: Asymptotical stability, neutral system, nonlinear perturbation, delay-dependent, linear matrix inequality (LMI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15211081 Numerical Study of a Class of Nonlinear Partial Differential Equations
Authors: Kholod M. Abu-Alnaja
Abstract:
In this work, we derive two numerical schemes for solving a class of nonlinear partial differential equations. The first method is of second order accuracy in space and time directions, the scheme is unconditionally stable using Von Neumann stability analysis, the scheme produced a nonlinear block system where Newton-s method is used to solve it. The second method is of fourth order accuracy in space and second order in time. The method is unconditionally stable and Newton's method is used to solve the nonlinear block system obtained. The exact single soliton solution and the conserved quantities are used to assess the accuracy and to show the robustness of the schemes. The interaction of two solitary waves for different parameters are also discussed.Keywords: Crank-Nicolson Scheme, Douglas Scheme, Partial Differential Equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14531080 Approximate Solution of Nonlinear Fredholm Integral Equations of the First Kind via Converting to Optimization Problems
Authors: Akbar H. Borzabadi, Omid S. Fard
Abstract:
In this paper we introduce an approach via optimization methods to find approximate solutions for nonlinear Fredholm integral equations of the first kind. To this purpose, we consider two stages of approximation. First we convert the integral equation to a moment problem and then we modify the new problem to two classes of optimization problems, non-constraint optimization problems and optimal control problems. Finally numerical examples is proposed.Keywords: Fredholm integral equation, Optimization method, Optimal control, Nonlinear and linear programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17731079 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems
Authors: Ali Reza Mehrabian, Caro Lucas
Abstract:
In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20901078 Solution of Nonlinear Second-Order Pantograph Equations via Differential Transformation Method
Authors: Nemat Abazari, Reza Abazari
Abstract:
In this work, we successfully extended one-dimensional differential transform method (DTM), by presenting and proving some theorems, to solving nonlinear high-order multi-pantograph equations. This technique provides a sequence of functions which converges to the exact solution of the problem. Some examples are given to demonstrate the validity and applicability of the present method and a comparison is made with existing results.
Keywords: Nonlinear multi-pantograph equation, delay differential equation, differential transformation method, proportional delay conditions, closed form solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25591077 Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems
Authors: Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji Fukushima, Yasutaka Igarashi
Abstract:
This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.
Keywords: Artificial bee colony algorithm, Gaussian process model, identification, nonlinear system, electric power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15751076 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations
Authors: Shishen Xie
Abstract:
In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations
Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21261075 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems
Authors: N. Kaewpraek, W. Assawinchaichote
Abstract:
This paper considers an H∞ TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an H∞ TS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H∞ performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.Keywords: H∞ fuzzy control, LMI, Takagi-Sugano (TS) fuzzy model, nonlinear dynamic systems, state-derivative feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9421074 The Control of a Highly Nonlinear Two-wheels Balancing Robot: A Comparative Assessment between LQR and PID-PID Control Schemes
Authors: A. N. K. Nasir, M. A. Ahmad, R. M. T. Raja Ismail
Abstract:
The research on two-wheels balancing robot has gained momentum due to their functionality and reliability when completing certain tasks. This paper presents investigations into the performance comparison of Linear Quadratic Regulator (LQR) and PID-PID controllers for a highly nonlinear 2–wheels balancing robot. The mathematical model of 2-wheels balancing robot that is highly nonlinear is derived. The final model is then represented in statespace form and the system suffers from mismatched condition. Two system responses namely the robot position and robot angular position are obtained. The performances of the LQR and PID-PID controllers are examined in terms of input tracking and disturbances rejection capability. Simulation results of the responses of the nonlinear 2–wheels balancing robot are presented in time domain. A comparative assessment of both control schemes to the system performance is presented and discussed.Keywords: PID, LQR, Two-wheels balancing robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52811073 Continuous Adaptive Robust Control for Nonlinear Uncertain Systems
Authors: Dong Sang Yoo
Abstract:
We consider nonlinear uncertain systems such that a priori information of the uncertainties is not available. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound and design a continuous robust control which renders nonlinear uncertain systems ultimately bounded.
Keywords: Adaptive Control, Estimation, Fredholm Integral, Uncertain System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16521072 Structural and Optical Properties of CdSiP2 and CdSiAs2 Nonlinear Optical Materials
Authors: N. N. Omehe
Abstract:
CdSiP2 and CdsiAs2 are nonlinear optical materials for near and mid-infrared applications. Density functional theory has been applied to study the structure, band gap, and optical properties of these materials. The pseudopotential method was used in the form of projector augmented wave (PAW) and norm-conserving, the band structure calculations yielded a band gap of 1.55 eV and 0.88 eV for CdSiP2 and CdsiAs2 respectively. The values of ε1(ω) from the doelectric function calculations are 15 and 14.9 CdSiP2 and CdsiAs2 respectively.
Keywords: Band structure, chalcopyrite, near-infrared materials, mid-infrared materials, nonlinear material, optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401071 A Review in Advanced Digital Signal Processing Systems
Authors: Roza Dastres, Mohsen Soori
Abstract:
Digital Signal Processing (DSP) is the use of digital processing systems by computers in order to perform a variety of signal processing operations. It is the mathematical manipulation of a digital signal's numerical values in order to increase quality as well as effects of signals. DSP can include linear or nonlinear operators in order to process and analyze the input signals. The nonlinear DSP processing is closely related to nonlinear system detection and can be implemented in time, frequency and space-time domains. Applications of the DSP can be presented as control systems, digital image processing, biomedical engineering, speech recognition systems, industrial engineering, health care systems, radar signal processing and telecommunication systems. In this study, advanced methods and different applications of DSP are reviewed in order to move forward the interesting research filed.Keywords: Digital signal processing, advanced telecommunication, nonlinear signal processing, speech recognition systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10381070 Perturbation Based Modelling of Differential Amplifier Circuit
Authors: Rahul Bansal, Sudipta Majumdar
Abstract:
This paper presents the closed form nonlinear expressions of bipolar junction transistor (BJT) differential amplifier (DA) using perturbation method. Circuit equations have been derived using Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL). The perturbation method has been applied to state variables for obtaining the linear and nonlinear terms. The implementation of the proposed method is simple. The closed form nonlinear expressions provide better insights of physical systems. The derived equations can be used for signal processing applications.Keywords: Differential amplifier, perturbation method, Taylor series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10171069 Signal and Harmonic Analysis of a Compressor Blade for Identification of the Nonlinear Frequency Vibration
Authors: Farhad Asadi, Gholamhasan Payganeh
Abstract:
High-speed turbomachine can experience significant centrifugal and gas bending loads. As a result, the compressor blades must be able to resist high-frequency oscillations due to surge or stall condition in flow field dynamics. In this paper, vibration characteristics of the 6th stage blade compressor have been examined in detail with, using 3-D finite element (FE) methods. The primary aim of this article is to gain an understanding of nonlinear vibration induced in the blade against different loading conditions. The results indicate the nonlinear behavior of the blade as a result of the amplitude of resonances or material properties. Since one of the leading causes of turbine blade failure is high cycle fatigue, simulations were started by specifying the stress distribution in the blade due to the centrifugal rotation. Next, resonant frequencies and critical speeds of the blade were defined by modal analysis. Finally, the harmonic analysis was simulated on the blades.
Keywords: Nonlinear vibration, modal analysis, resonance, frequency response, compressor blade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6141068 Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling
Authors: A. Puras Trueba, J. R. Llata García
Abstract:
A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.Keywords: Fuzzy Gain-Scheduling, Gimbal, Line-Of-SightStabilization, LQR, Optimal Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23281067 A New Approximate Procedure Based On He’s Variational Iteration Method for Solving Nonlinear Hyperbolic Wave Equations
Authors: Jinfeng Wang, Yang Liu, Hong Li
Abstract:
In this article, we propose a new approximate procedure based on He’s variational iteration method for solving nonlinear hyperbolic equations. We introduce two transformations q = ut and σ = ux and formulate a first-order system of equations. We can obtain the approximation solution for the scalar unknown u, time derivative q = ut and space derivative σ = ux, simultaneously. Finally, some examples are provided to illustrate the effectiveness of our method.
Keywords: Hyperbolic wave equation, Nonlinear, He’s variational iteration method, Transformations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137