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Abstract—In this paper, the problem of asymptotical stability of
neutral systems with nonlinear perturbations is investigated. Based on
a class of novel augment Lyapunov functionals which contain free-
weighting matrices, some new delay-dependent asymptotical stability
criteria are formulated in terms of linear matrix inequalities (LMIs)
by using new inequality analysis technique. Numerical examples are
given to demonstrate the derived condition are much less conservative
than those given in the literature.
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I. INTRODUCTION

IT is well known that neutral systems are frequently encoun-
tered in various engineering systems, including population

ecology, distributed networks containing lossless transmission
lines, heat exchangers, and repetitive control [13], [9], [18].
There are many reports about stability conditions for neutral
systems in the literature, such as [16], [7], [10], [11], [12],
[17], [8], and the references therein. Currently efforts on
the problem for stability of neutral systems can be divided
into two categories, namely delay-dependent stability criteria
and delay-independent stability criteria. Generally speaking,
the delay-dependent stability conditions are less conservative
than the delay-independent stability conditions for the neutral
systems with small time delay.

In recent decades, the problem of robust stability of time-
delay systems with nonlinear perturbations has also received
considerable attention. To deal with the stability of systems
with time varying delays and nonlinear perturbations, Cao and
Lam proposed a model transformation technique [1]. By using
a descriptor transformation method combined with a matrix
decomposition approach, [4] presented the stability conditions
for uncertain systems including time-varying delays, and both
nonlinear perturbations and norm-bounded uncertainties are
considered. The results in [4] were less conservative than
those of [1],[4]. In order to reduce the conservatism, some
free-weighting matrices (slack matrices) were introduced to-
gether with a descriptor transformation method [23]. Using
the Lyapunov functional technique combined with matrix in-
equality technique, [14] presented a novel asymptotic stability
criterion for neutral systems with nonlinear perturbations. [6]
also studied the neutral systems with nonlinear parameter
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perturbations with a model transformation technique, by con-
structing Lyapunov-functionals. To reduce the conservatism, a
new integral inequality which is particularly suitable for the
analysis of the stability of the neutral systems was introduced
in [21]. However, both the results of time-delay bounds in [6]
and [21] are so small that can be improved with another novel
approach, and some novel integrate inequalities which were
introduced in [22] might also be considered into the stability
of neutral systems with nonlinear perturbation, all of which
motivates this paper.

In this paper, the delay-dependent asymptotic stability for
uncertain neutral systems with nonlinear perturbations is
studied. Owing to a class of novel augmented Lyapunov-
Krasovskii functionals, improved delay-dependent asymptot-
ical stability criteria for the neutral systems are derived by
using the inequalities analysis technique and introducing some
free weighting matrices. Note that these advantages are not
obtained at the cost of high computational complexity. Finally,
numerical examples are given to illustrate the superiority of
present result to those in the literature.

II. PROBLEM STATEMENT

Nomenclature
Rn n-dimensional real space
Rn×n set of all real n by n matrices
xT or AT transpose of vector x (or matrix A)
P > 0 (respectively, P < 0) matrix P is symmetric

positive (respectively, negative) definite
P ≥ 0 (respectively, P ≤ 0) matrix P is symmetric

positive (respectively, negative) semi-definite
* the elements below the main diagonal of a symmetric

block matrix.

Consider the following uncertain nonlinear with mixed time-
varying delay system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ (t) − Cẋ (t− τ2) = Ax (t) +Bx (t− τ1 (t))
+f1 (t, x (t))
+f2 (t, x (t− τ1 (t)))
+f3 (t, ẋ (t− τ2))

x (t0 + θ) = ϕ (θ) ,∀θ ∈ [−ρ, 0]

(1)

where x (t) ∈ Rn is the state vector , the time-varying delays
h (t) and τ (t) satisfy

0 ≤ τ1 (t) ≤ τ1 <∞, τ̇1 (t) ≤ τ1d, ρ = max {τ1, τ2} .
ϕ (θ) is the initial condition function, A ∈ Rn×n, B ∈
Rn×n, C ∈ Rn×n are uncertain matrices, and the function
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f1 (t, x (t)) , f2 (t, x (t− τ1 (t))) and f3 (t, ẋ (t− τ2)) repre-
sent the nonlinear time-varying perturbations. It is assumed
that fi (t, 0) = 0(i = 1, 2, 3),and

‖f1 (t, x (t))‖ ≤ β1 ‖x (t)‖ (2a)
‖f2 (t, x (t− τ1 (t)))‖ ≤ β2 ‖x (t− τ1 (t))‖ (2b)
‖f3 (t, ẋ (t− τ2))‖ ≤ β3 ‖ẋ (t− τ2)‖ (2c)

where β1 ≥ 0, β2 ≥ 0 and β3 ≥ 0 are given constants.
Constraint (2) can be rewritten as following:

fT
1 (t, x (t)) f1 (t, x (t)) ≤ β2

1x
T (t)x (t) (3a)

fT
2

(t, x (t− τ1 (t))) f2 (t, x (t− τ1 (t)))

≤ β2
2x

T (t− τ1 (t))x (t− τ1 (t)) (3b)

fT
3

(t, ẋ (t− τ2)) f3 (t, ẋ (t− τ2))

≤ β2
3 ẋ

T (t− τ2) ẋ (t− τ2) (3c)

for the sake of simplicity, let f1 := f1 (t, x (t)) , f2 :=
f2 (t, x (t− τ1 (t))) , f3 := f3 (t, ẋ (t− τ2)).

Lemma 1: [22] For any constant symmetric matrix Q ∈
Rn×n, Q = QT > 0, and any appropriate dimensional

matrices, M1 ∈ Rn, M2 ∈ Rn, Z =
(
Z11 Z12

∗ Z22

)
∈

R2n×2n, Y =
[
M1 M2

] ∈ Rn×2n, if
(
Q Y
∗ Z

)
> 0,

0 ≤ τ (t) ≤ τ <∞, such that the integrations in the following
are well defined, then

−
∫ t

t−τ

ẋT (s)Qẋ (s)ds ≤ ξ (t)T

( M11 M12

∗ M22

)
ξ (t)

where,

M11 = M1 +MT
1 + τZ11,

M12 = −MT
1 +M2 + τZ12,

M22 = −M2 −MT
2 + τZ22,

ξ (t) = col
(
x (t) x (t− τ (t))

)
.

Lemma 2: [3] For any constant symmetric matrix M ∈
Rn×n, M = MT > 0, scalar r > 0, vector function
g : [0, r] → Rn, such that the integrations in the following
are well defined, then

r

∫ r

0

gT (s)Mg (s)ds ≥
[∫ r

0

g (s) ds
]T

M

[∫ r

0

g (s) ds
]

III. MAIN RESULTS

In general, the following assumption is satisfied as consid-
ering the stability of neutral systems.

A1. All the eigenvalues of matrix C are inside the unit
circle.

For the asymptotically stability of systems described by (1),
we have the following result.

Theorem 1: Under A1, the systems (1) is asymptotically

stability, if there exist matrices L =

⎛
⎝ L11 L12 L13

LT
12 L22 L23

LT
13 LT

23 L33

⎞
⎠ ≥

0 with L11 > 0, R =
(
R11 R12

RT
12 R22

)
≥ 0, Q1 > 0,

Q2 > 0, Q3 > 0, N99 > 0 and any appropriate dimen-
sional matrices Nij (i, j = 1, · · · , 9), M1 ∈ Rn, M2 ∈ Rn,

Y =
[
M1 M2

] ∈ Rn×2n, Z =
(
Z11 Z12

∗ Z22

)
and

scalars ε1 > 0, ε2 > 0, ε3 > 0, such that the following
LMIs holds: (

Q3 Y
∗ Z

)
> 0 (4)

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

N11 N12 N13 N14 · · · N19

∗ N22 N23 N24 · · · N29

∗ ∗ N33 N34 · · · N39

∗ ∗ ∗ N44 · · · N49

...
...

...
...

. . .
...

∗ ∗ ∗ ∗ · · · N99

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
> 0

(5)

φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

φ11 φ12 φ13 φ14 · · · φ19

∗ φ22 φ23 φ24 · · · φ29

∗ ∗ φ33 φ34 · · · φ39

∗ ∗ ∗ φ44 · · · φ49

...
...

...
...

. . .
...

∗ ∗ ∗ ∗ · · · φ99

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
> 0 (6)

where

φ11 = (L11 +R12)A+AT (L11 +R12)
T + L13 + LT

13

+N19 +NT
19 +R11 +Q1 + τ2Q2

+M1 +MT
1 + τ1Z11 + ε1β

2
1I + τ1N11,

φ12 =ATL12 +NT
29 − L13 + LT

23 + τ1N12,

φ13 = (L11 +R12)C + L12 +NT
39 + τ1N13,

φ14 = (L11 +R12)B +NT
49 −MT

1 +M2 + τ1Z12 + τ1N14,

φ15 =L11 +R12 +NT
59 + τ1N15,

φ16 =L11 +R12 +NT
69 + τ1N16,

φ17 =L11 +R12 +NT
79 + τ1N17,

φ18 =τ2ATL13 + τ2L
T
33 +NT

89 + τ1N18,

φ19 =AT (τ1N99 +R22 + τ1Q3) ,

φ22 = − L23 − LT
23 −R11 + τ1N22,

φ23 =L22 + LT
12C −R12 + τ1N23,

φ24 =LT
12B −NT

29 + τ1N24,

φ25 =LT
12 + τ1N25,

φ26 =LT
12 + τ1N26,

φ27 =LT
12 + τ1N27,

φ28 = − τ2L
T
33 + τ1N28, φ29 = 0

φ33 = −R22 + ε3β
2
3I + τ1N33,

φ34 = −N39 + τ1N34,

φ3j =τ1N3j (j = 5, 6, 7) ,

φ38 =τ2CTL13 + τ2L23 + τ1N38,

φ39 =CT (τ1N99 +R22 + τ1Q3) ,

φ44 = − (1 − τ1d)Q1 −N49 −NT
49 −M2

−MT
2 + τ1Z22 + ε2β

2
2I + τ1N44,

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:4, No:7, 2010 

855International Scholarly and Scientific Research & Innovation 4(7) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:4
, N

o:
7,

 2
01

0 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
08

45
.p

df



φ45 = −NT
59 + τ1N45,

φ46 = −NT
69 + τ1N46,

φ47 = −NT
79 + τ1N47,

φ48 = −NT
89 + τ2B

TL13 + τ1N48,

φ49 =BT (τ1N99 +R22 + τ1Q3) ,
φ55 = − ε1I + τ1N55,

φ56 =τ1N56, φ57 = τ1N57,

φ58 =τ2L13 + τ1N58,

φ59 =τ1N99 +R22 + τ1Q3,

φ66 = − ε2I + τ1N66,

φ67 =τ1N67, φ68 = τ2L13 + τ1N68,

φ69 =τ1N99 +R22 + τ1Q3,

φ77 = − ε3I + τ1N77,

φ78 =τ2L13 + τ1N78,

φ79 =τ1N99 +R22 + τ1Q3,

φ88 = − τ2Q2 + τ1N88, φ99 = −τ1N99 −R22 − τ1Q3.

Proof. Firstly, from (3), we obtain for any scalars ε1 > 0,
ε2 > 0, ε3 > 0.

ε1
[
β2

1x
T (t)x (t) − fT

1 (t, x (t)) f1 (t, x (t))
] ≥ 0 (7a)

ε2
[
β2

2x
T (t− τ1 (t))x (t− τ1 (t)) − fT

2 f2
] ≥ 0 (7b)

ε3
[
β2

3 ẋ
T (t− τ2) ẋ (t− τ2) − fT

3 f3
] ≥ 0 (7c)

Choose a class of augmented Lyapunov-Krasovskii functional
candidate for systems (1) as following:

V (t) = V1 (t) + V2 (t) + V3 (t) + V4 (t) + V5 (t) + V6 (t) ,

where,

V1 (t) =

⎛
⎝ x (t)

x (t− τ2)∫ t

t−τ2
x (s) ds

⎞
⎠

T

L

⎛
⎝ x (t)

x (t− τ2)∫ t

t−τ2
x (s) ds

⎞
⎠ ,

V2 (t) =
∫ t

t−τ2

(
x (s)
ẋ (s)

)T

R

(
x (s)
ẋ (s)

)
ds,

V3 (t) =
∫ t

t−τ1(t)

xT (s)Q1x (s) ds,

V4 (t) =
∫ t

t−τ2

(θ − t+ τ2)xT (θ)Q2x (θ) dθ,

V5 (t) =
∫ t

t−τ1

(θ − t+ τ1)ẋT (θ)Q3ẋ (θ) dθ,

V6 (t) =
∫ t

t−τ1

(θ − t+ τ1)ẋT (θ)N99ẋ (θ) dθ,

and L, Q1, Q2, Q3, R and N99 are defined in theorem1.
The time derivative of V (t) along the trajectory of system

(1) is given by:

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) + V̇6(t),

where

V̇1 (t) = 2

⎛
⎝ x (t)

x (t− τ2)∫ t

t−τ2
x (s) ds

⎞
⎠

T

L

⎛
⎝ ẋ (t)

ẋ (t− τ2)
x (t) − x (t− τ2)

⎞
⎠

= 2

⎛
⎝ x (t)

x (t − τ2)∫ t
t−τ2

x (s) ds

⎞
⎠

T

L

⎛
⎜⎜⎜⎝

Ax (t) + Bx (t − τ1 (t))
+Cẋ (t − τ2) + f1

+f2 + f3

ẋ (t − τ2)
x (t) − x (t − τ2)

⎞
⎟⎟⎟⎠ , (8)

V̇2 (t) =
(
x (t)
ẋ (t)

)T (
R11 R12

RT
12 R22

)(
x (t)
ẋ (t)

)

−
(
x (t− τ2)
ẋ (t− τ2)

)T (
R11 R12

RT
12 R22

)

×
(
x (t− τ2)
ẋ (t− τ2)

)

= xT (t)R11x (t) + ẋT (t)R22ẋ (t)

−
(
x (t− τ2)
ẋ (t− τ2)

)T (
R11 R12

RT
12 R22

)

×
(
x (t− τ2)
ẋ (t− τ2)

)
+2xT (t)R12[Ax (t) +Bx (t− τ1 (t))
+Cẋ (t− τ2) + f1 + f2 + f3],

(9)

V̇3 (t) =xT (t)Q1x (t) − (1 − τ̇1 (t))xT (t− τ1 (t))
×Q1x (t− τ1 (t))

≤xT (t)Q1x (t) − (1 − τ1d)xT (t− τ1 (t))
×Q1x (t− τ1 (t)) , (10)

It’s from the Lemma1 and Lemma2 that we have

V̇4 (t) = xT (t) τ2Q2x (t) −
∫ t

t−τ2

xT (s)Q2x (s) ds

≤ xT (t) τ2Q2x (t) −
(

1
τ2

∫ t

t−τ2

x (s)ds
)T

×τ2Q2

(
1
τ2

∫ t

t−τ2

x (s)ds
)
, (11)

V̇5 (t) = ẋT (t) τ1Q3ẋ (t) −
∫ t

t−τ1

ẋT (s)Q3ẋ (s) ds

≤ ẋT (t) τ1Q3ẋ (t)

+ξ (t)T

( M11 M12

∗ M22

)
ξ (t) , (12)

with

M11 = M1 +MT
1 + τZ11,

M12 = −MT
1 +M2 + τZ12,

M22 = −M2 −MT
2 + τZ22,

ξ (t) = col
(
x (t) x (t− τ (t))

)
.

V̇6 (t) = ẋT (t) τ1N99ẋ (t) −
∫ t

t−τ1

ẋT (s)N99ẋ (s) ds

≤ ẋT (t) τ1N99ẋ (t)−
∫ t

t−τ1(t)

ẋT (s)N99ẋ (s) ds. (13)
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From the Leibniz-Newton formula, the following equa-
tion is true for any appropriate dimensional matrices
Ni9 (i = 1, · · · , 8)

2
{
xT (t)N19 + xT (t− τ2)N29 + ẋT (t− τ2)N39

+xT (t− τ1 (t))N49 + fT
1 N59

+fT
2 N69 + fT

3 N79 +
(

1
τ2

∫ t

t−τ2
x (s)ds

)T

N89

}
×

{
x (t) − x (t− τ1 (t)) − ∫ t

t−τ1(t)
ẋ (s) ds

}
= 0

, (14)

And consider the fact that, for any m > 0 and any
functionf (t),

mf (t) −
∫ t

t−m

f (t)ds = 0,

the following inequality is also true for any appropriate di-
mensional matrices Nij (i, j = 1, · · · , 8)

τ1ξ
T (t)

⎛
⎜⎜⎜⎜⎝

N11 N12 N13 · · · N18

∗ N22 N23 · · · N28

∗ ∗ N33 · · · N38

...
...

...
. . .

...
∗ ∗ ∗ ∗ N88

⎞
⎟⎟⎟⎟⎠ ξ (t)

−
∫ t

t−τ1(t)

ξT (t)

⎛
⎜⎜⎜⎜⎝

N11 N12 N13 · · · N18

∗ N22 N23 · · · N28

∗ ∗ N33 · · · N38

...
...

...
. . .

...
∗ ∗ ∗ ∗ N88

⎞
⎟⎟⎟⎟⎠

×ξ (t) ds ≥ 0 (15)

where
ξT (t) =

[
xT (t) xT (t − τ2) ẋT (t − τ2)

xT (t − τ1 (t)) fT
1 fT

2 fT
3

(
1
τ2

∫ t

t−τ2
x (s)ds

)T ]
.

Choosing M = τ1N99 + R22 + τ1Q3, use systems (1) to
obtain
ẋT (t) (τ1N99 +R22 + τ1Q3) ẋ (t) =
[Ax (t) +Bx (t− τ1 (t)) + Cẋ (t− τ2) + f1 + f2 + f3]

T

×M [Ax (t) +Bx (t− τ1 (t)) + Cẋ (t− τ2) + f1 + f2 + f3]
(16)

Then, we add the terms on the left sides of (14) and (15) to
V̇ (t), and use the Schur’s complement in [15] on the term of
(16), we obtain

V̇ (t) ≤ ξT (t)ϕξ (t) −
∫ t

t−τ1(t)

ζT (t, s)Nζ (t, s)ds,

where
ζT (t, s) =

[
xT (t) xT (t− τ2) ẋT (t− τ2)

xT (t− τ1 (t)) fT
1 fT

2 fT
3(

1
τ2

∫ t

t−τ2
x (s)ds

)T

ẋT (s)

]
,

and most elements of ϕ are the same as the elements of φ,
except that the following:

ϕ11 = (L11 +R12)A+AT (L11 +R12)
T + L13 + LT

13

+N19 +NT
19 +R11 +Q1 + τ2Q2 +M1 +MT

1

+ τ1Z11 + τ1N11,

ϕ33 = −R22 + τ1N33,

ϕ44 = − (1 − τ1d)Q1 −M2 −MT
2 + τ1Z22

−N49 −NT
49 + τ1N44,

ϕ55 =τ1N55, ϕ66 = τ1N66, ϕ77 = τ1N77

By the theorem 9.8.1 in [13], the system (1) with A1 is
asymptotically stable if there exist L > 0, R ≥ 0, Q1 > 0,
Q2 > 0, Q3 > 0, N99 > 0 and N > 0 which were defined in
Theorem1 such that:

V̇ (t) ≤ ξT (t)ϕξ (t) −
∫ t

t−τ1(t)

ζT (t, s)Nζ (t, s)ds < 0

(17)
for all ξ (t) 
= 0, ζ (t, s) 
= 0 satisfying (3). Using the S-
procedure [19], we see that this condition is implied by (6)
such that:

ξT (t)ϕξ (t) −
∫ t

t−τ1(t)

ζT (t, s)Nζ (t, s)ds

+ε1
[
β2

1x
T (t)x (t) − fT

1 (t, x (t)) f1 (t, x (t))
]

+ε2
[
β2

2x
T (t− τ1 (t))x (t− τ1 (t)) − fT

2 f2
]

+ε3
[
β2

3 ẋ
T (t− τ2) ẋ (t− τ2) − fT

3 f3
]

< 0

for all ξ (t) 
= 0, ζ (t, s) 
= 0. Therefore, there exist L > 0,
R ≥ 0, Q1 > 0, Q2 > 0, Q3 > 0, N99 > 0 and N > 0
which were defined in Theorem1, and scalars ε1 > 0, ε2 > 0,
ε3 > 0, such that the LMIs (4), (5) and (6) are satisfied, then
systems (1), with uncertainty (2), is asymptotically stability.
This completes the proof.

Remark 1: Many existing delay-derivative-dependent sta-
bility criteria of system with severely time-varying delay
generally require a constraint τ1d < 1. In this paper, we
omit this assumption and obtained a less conservative stability
condition. As a matter of fact, the chosen Lyapunov-Krasovskii
functional in this theorem is the same as our latest article [20],
however, in the process of the derivative of the functional, the
lemma 1 is very important to our less conservative results,
which will be shown subsequently in the examples.

If we set β3 = 0, similar to the proof of Theorem 1, we
can obtain the following Corollary.

Corollary 1: Under A1, the systems (1) is
asymptotically stability, if there exist matrices

L =

⎛
⎝ L11 L12 L13

LT
12 L22 L23

LT
13 LT

23 L33

⎞
⎠ ≥ 0 with L11 > 0,

R =
(
R11 R12

RT
12 R22

)
≥ 0, Q1 > 0, Q2 > 0,

Q3 > 0, N88 > 0 and any appropriate dimensional
matrices Nij (i, j = 1, · · · , 8), M1 ∈ Rn, M2 ∈ Rn,

Y =
[
M1 M2

] ∈ Rn×2n, Z =
(
Z11 Z12

∗ Z22

)
and

scalars ε1 > 0, ε2 > 0, ε3 > 0, such that the following LMIs
holds: (

Q3 Y
∗ Z

)
> 0 (18)
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N =

⎛
⎜⎜⎜⎜⎜⎝

N11 N12 N13 · · · N18

∗ N22 N23 · · · N28

∗ ∗ N33 · · · N38

...
...

...
. . .

...
∗ ∗ ∗ ∗ N88

⎞
⎟⎟⎟⎟⎟⎠ > 0 (19)

φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

φ11 φ12 φ13 φ14 · · · φ18

∗ φ22 φ23 φ24 · · · φ28

∗ ∗ φ33 φ34 · · · φ38

∗ ∗ ∗ φ44 · · · φ48

...
...

...
...

. . .
...

∗ ∗ ∗ ∗ · · · φ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
> 0 (20)

where

φ11 = (L11 +R12)A+AT (L11 +R12)
T + L13 + LT

13

+N18 +NT
18 +R11 +Q1 + τ2Q2 +M1 +MT

1

+ τ1Z11 + ε1β
2
1I + τ1N11,

φ12 =ATL12 +NT
28 − L13 + LT

23 + τ1N12,

φ13 = (L11 +R12)C + L12 +NT
38 + τ1N13,

φ14 = (L11 +R12)B +NT
48 + τ1N14 −MT

1 +M2 + τ1Z12,

φ15 =L11 +R12 +NT
58 + τ1N15,

φ16 =L11 +R12 +NT
68 + τ1N16,

φ17 =τ2ATL13 + τ2L
T
33 +NT

78 + τ1N18,

φ18 =AT (τ1N88 +R22 + τ1Q3) ,

φ22 = − L23 − LT
23 −R11 + τ1N22,

φ23 =L22 + LT
12C −R12 + τ1N23,

φ24 =LT
12B −NT

28 + τ1N24,

φ25 =LT
12 + τ1N25,

φ26 =LT
12 + τ1N26,

φ27 = − τ2L
T
33 + τ1N27, φ28 = 0

φ33 = −R22 + ε3β
2
3I + τ1N33,

φ34 = −N38 + τ1N34, φ3j = φ3j = τ1N3j (j = 5, 6) ,

φ37 =τ2CTL13 + τ2L23 + τ1N37,

φ38 =CT (τ1N88 +R22 + τ1Q3) ,

φ44 = − (1 − τ1d)Q1 −N48 −NT
48 −M2 −MT

2

+ τ1Z22 + ε2β
2
2I + τ1N44,

φ45 = −NT
58 + τ1N45,

φ46 = −NT
68 + τ1N46,

φ47 = −NT
78 + τ2B

TL13 + τ1N47,

φ48 =BT (τ1N88 +R22 + τ1Q3) ,
φ55 = − ε1I + τ1N55, φ56 = τ1N56,

φ57 =τ2L13 + τ1N57,

φ58 =τ1N88 +R22 + τ1Q3,

φ66 = − ε2I + τ1N66,

φ67 =τ2L13 + τ1N67,

φ68 =τ1N88 +R22 + τ1Q3,

φ77 = − τ2Q2 + τ1N77,

φ88 = − τ1N88 −R22 − τ1Q3.

If C ≡ 0 andf3 (t, ẋ (t− τ2)) ≡ 0, then system (1) reduces to
the following system:⎧⎨

⎩
ẋ (t) = Ax (t) +Bx (t− τ1 (t))

+f1 (t, x (t)) + f2 (t, x (t− τ1 (t)))
x (t0 + θ) = ϕ (θ) ,∀θ ∈ [−τ1m, 0]

(21)

According to Theorem1, we have the following corollary
for the delay-dependent stability of system (22).

Corollary 2: Under A1, the systems (1) is asymptoti-
cally stability, if there exist matrices L > 0, Q1 > 0,
Q2 > 0, N55 > 0 and any appropriate dimensional ma-
trices Nij (i, j = 1, · · · , 5), M1 ∈ Rn, M2 ∈ Rn, Y =[
M1 M2

] ∈ Rn×2n, Z =
(
Z11 Z12

∗ Z22

)
and scalars

ε1 > 0, ε2 > 0, such that the following LMIs holds:(
Q2 Y
∗ Z

)
> 0 (22)

N =

⎛
⎜⎜⎜⎜⎝

N11 N12 N13 N14 N15

∗ N22 N23 N24 N25

∗ ∗ N33 N34 N35

∗ ∗ ∗ N44 N45

∗ ∗ ∗ ∗ N55

⎞
⎟⎟⎟⎟⎠ > 0 (23)

φ =

⎛
⎜⎜⎜⎜⎝

φ11 φ12 φ13 φ14 ATS
∗ φ22 φ23 φ24 BTS
∗ ∗ φ33 φ34 S
∗ ∗ ∗ φ44 S
∗ ∗ ∗ ∗ −S

⎞
⎟⎟⎟⎟⎠ > 0, (24)

where,

φ11 =LA+ATLT +N15 +NT
15 +Q1 +M1 +MT

1

+ τ1Z11 + ε1β
2
1I + τ1N11,

φ12 =LB +NT
25 −N15 + τ1N12 −MT

1 +M2 + τ1Z12,

φ13 =L+NT
35 + τ1N13,

φ14 =L+NT
45 + τ1N14,

φ22 = − (1 − τ1d)Q1 −N25 −NT
25 −M2 −MT

2

+ τ1Z22 + ε2β
2
2I + τ1N22.

φ23 = −NT
35 + τ1N23,

φ24 = −NT
45 + τ1N24,

φ33 = − ε1I + τ1N33,

φ34 =τ1N34, φ44 = −ε2I + τ1N44,

S =τ1N55 + τ1Q2.

Remark 2: Theorem1, Collary1 and Collary2 are novel
delay-dependent asymptotically stability conditions for non-
linear systems (1) with different cases. And the results are
both delay-dependent and delay-derivative-dependent. They
are expected to be less conservative than some results in
the literature, because we make good use of the integrate
inequalities technique and free-weighting matrix which can
be selected by solving the LMIs in Theorem 1, Corollary 1
and Corollary 2. In contrast, previous methods employed fixed
weighting matrices, which are not usually the optimal ones
and may bring some conservatism. The comparisons of their
conservatism with some existing methods will be presented in
Section 4.
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IV. NUMERICAL EXAMPLES

In order to show the effectiveness of the approaches
presented in Section 3, in this section, two numerical
examples are provided.

Example1. Consider the neutral systems (1) which was
considered in [21] with

A =
( −1.2 0.1

−0.1 −1

)
, B =

( −0.6 0.7
−1 −0.8

)
,

C =
(
c 0
0 c

)
,

‖f1 (t, x (t))‖ ≤ α1 ‖x (t)‖ ,
‖f2 (t, x (t− τ1 (t)))‖ ≤ α2 ‖x (t− τ1 (t))‖ ,

‖f3 (t, ẋ (t− τ2))‖ ≤ α3 ‖ẋ (t− τ2)‖ ,
where α1 ≥ 0,α2 ≥ 0,α3 ≥ 0and 0 ≤ c < 1.

We now also consider the effect of the bound α3 on the
maximal allowable value τ1m.For c = 0.1, τ2 = 1, τ1d = 0.5,
α2 = 0.1, and different values of α3, we apply theorem1 and
Corollary to calculate the maximal allowable value τ1m that
guarantees the asymptotical stability of the system.

Table I gives the comparison of our results with those in
[6] and [21]. We can see from Table 1 that the upper bound
of α3 has a remarkable effect on τ1m, τ1m decreases as α3

increases. In conclusion, the results obtained in this paper are
less conservative than that presented in [6] and [21].

For c = 0 and f3 (t, ẋ (t− τ2)) ≡ 0, the system under
consideration reduces to the system studied in [1].Applying
criteria in [1], [4], [6] and in this work, the maximum value
of τ1m for the stability of the system is listed in Table II. It is
easy to see that our proposed stability criterion gives a much
less conservative result than one in [1], [4] and [6].

One should be noted that, on the one hand, from the
comparison in table I, our results is inferior to our latest
results in [20], however, it is also less conservative than
those conditions in [6] and [21]. On the other hand, the less
conservativeness is also shown in the table II.

TABLE I
THE MAXIMAL ALLOWABLE DELAYS τ1m OF EXAMPLE1 FOR DIFFERENT

VALUES OF α3 .

α3 0 0.1 0.2 0.3
[6](α1=0) 0.9328 0.7402 0.5637 0.4042

[21](α1=0) 0.9488 0.7695 0.6087 0.4667
This paper(α1=0) 1.5603 1.3460 0.9686 0.7326

[6](α1=0.1) 0.8418 0.6439 0.4864 0.3433
[21](α1=0.1) 0.8408 0.6841 0.5420 0.4144

This paper(α1=0.1) 1.4531 1.2805 0.9466 0.7303

Example2. Consider the neutral system
d

dt
[x (t) − Cx (t− τ)] = Ax (t) +Bx (t− τ)

+f1 (t, x (t)) + f2 (t, x (t− τ)) (25)

A =
( −2 0.5

0 −1

)
, B =

(
1 0.4

0.4 −1

)
,

C =
(

0.2 1
0 0.2

)
,

TABLE II
THE MAXIMAL ALLOWABLE DELAYS τ1m OF EXAMPLE1 FOR DIFFERENT

VALUES OF α3 .

α1 = 0, α2 = 0.1 α1 = 0.1, α2 = 0.1
τ1d=0 τ1d=0.5 τ1d=0 τ1d=0.5

[1] 0.6811 0.5467 0.6129 0.4950
[4] 1.3279 0.6743 1.2503 0.5716
[6] 2.7424 1.1365 1.8753 0.9953

This work 1.7565 × 105 7.3488 1.2404 × 105 5.8188

with ‖f1 (t, x (t))‖ ≤ α1 ‖x (t)‖, ‖f2 (t, x (t− τ))‖ ≤
α2 ‖x (t− τ)‖ where α1 = 0.2, α2 = 0.1.

This system was studied in [14], where it is found that
the admissible bound of the time delay τ for the stability of
systems (25) is 0.583. Applying the criteria in this paper, the
upper bound of the delay τ has been obtained as 1.9391. This
also shows that the criterion given in this paper is much less
conservative than that in [14].

V. CONCLUSION

The asymptotical stability for uncertain neutral systems with
nonlinear perturbations has been investigated. Based on a new
class of Lyapunov-Krasovskii functionals, and combined with
the use of novel integrate inequalities and the Leibniz-Newton
formula, some novel stability criteria have been obtained.
Numerical examples have shown significant improvements
over some existing results.
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