Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31100
Explicit Feedback Linearization of Magnetic Levitation System

Authors: Bhawna Tandon, Shiv Narayan, Jagdish Kumar


This study proposes the transformation of nonlinear Magnetic Levitation System into linear one, via state and feedback transformations using explicit algorithm. This algorithm allows computing explicitly the linearizing state coordinates and feedback for any nonlinear control system, which is feedback linearizable, without solving the Partial Differential Equations. The algorithm is performed using a maximum of N-1 steps where N being the dimension of the system.

Keywords: Nonlinear Control, magnetic levitation system, feedback linearization, explicit algorithm

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599


[1] Valer Dolga, Lia Dolga, “Modeling and Simulation of a Magnetic Levitation System” Annals of the Ordea University, Fascicle of Management and Technological Engineering, Volume VI (XVI),2007.
[2] Ying Shing Shiao, “Design and Implementation of a controller for a Magnetic Levitation System”, Proc. Natl. Sci. Counc. ROC (D), Vol. 11, No. 2, pp. 88-94, 2001.
[3] Ehsan Shameli, Mir Behrad Khamesee, Jan Paul Huissoon, “NonLinear controller design for a magnetic levitation device”, Microsyst Technol, Vol. 13, pp. 831-835, Springer Verlag, 2006.
[4] W. Barie and J. Chiasoson, “Linear and nonlinear state space controllers for Magnetic Levitation”, International Journal of System Science, Vol. 27, Issue 1, pp. 1153-1163, 1996.
[5] Issa Amadou Tall, “Explicit Feedback Linearization of Control Systems”,48th IEEE Conference on Decision and Control, Shanghai, P. R. China, pp. 7454-7459, December 2009.
[6] Issa Amadou Tall, “State Linearization of NonLinear Control Systems: An Explicit Algorithm”,48th IEEE Conference on Decision and Control, Shanghai, P. R. China, pp. 7448-7453, December 2009.
[7] A.Isidori, “Nonlinear Control Systems”, 3rd edition, Springer, London, 1995.
[8] A.J.Krener, “On the Equivalence of control systems and the linearization of nonlinear systems”, SIAM Journal on Control, Vol. 11, pp. 670-676, 1973.
[9] R.W. Brockett, “Feedback Invariants for nonlinear ayatems”, in proceedings of IFAC Congress, Helsinski, 1978.
[10] H. Nijmeijer and A.J. Van Der Schaft, “Nonlinear Dynamical Control Systems”, Springer-Verlag, New York, 1990.