Search results for: Multi Objective Optimization
3077 Agreement Options in Multi-person Decision on Optimizing High-Rise Building Columns
Authors: Christiono Utomo, Arazi Idrus, Madzlan Napiah, Mohd. Faris Khamidi
Abstract:
This paper presents a conceptual model of agreement options for negotiation support in multi-person decision on optimizing high-rise building columns. The decision is complicated since many parties involved in choosing a single alternative from a set of solutions. There are different concern caused by differing preferences, experiences, and background. Such building columns as alternatives are referred to as agreement options which are determined by identifying the possible decision maker group, followed by determining the optimal solution for each group. The group in this paper is based on three-decision makers preferences that are designer, programmer, and construction manager. Decision techniques applied to determine the relative value of the alternative solutions for performing the function. Analytical Hierarchy Process (AHP) was applied for decision process and game theory based agent system for coalition formation. An n-person cooperative game is represented by the set of all players. The proposed coalition formation model enables each agent to select individually its allies or coalition. It further emphasizes the importance of performance evaluation in the design process and value-based decision.Keywords: Agreement options, coalition, group choice, game theory, building columns selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16253076 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning
Authors: Federico Pittino, Dominik Holzmann, Krithika Sayar-Chand, Stefan Moser, Sebastian Pliessnig, Thomas Arnold
Abstract:
The shredding of waste materials is a key step in the recycling process towards circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need of frequent maintenance of critical components. The maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for several months and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring a very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for efficient operation of industrial shredders.
Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6403075 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation
Authors: W. Du, X. Wang, Jun Cao, H. F. Wang
Abstract:
Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.
Keywords: Frequency regulation, virtual inertia control, installation locations, observability, wind farms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21503074 Singular Value Decomposition Based Optimisation of Design Parameters of a Gearbox
Authors: Mehmet Bozca
Abstract:
Singular value decomposition based optimisation of geometric design parameters of a 5-speed gearbox is studied. During the optimisation, a four-degree-of freedom torsional vibration model of the pinion gear-wheel gear system is obtained and the minimum singular value of the transfer matrix is considered as the objective functions. The computational cost of the associated singular value problems is quite low for the objective function, because it is only necessary to compute the largest and smallest singular values (μmax and μmin) that can be achieved by using selective eigenvalue solvers; the other singular values are not needed. The design parameters are optimised under several constraints that include bending stress, contact stress and constant distance between gear centres. Thus, by optimising the geometric parameters of the gearbox such as, the module, number of teeth and face width it is possible to obtain a light-weight-gearbox structure. It is concluded that the all optimised geometric design parameters also satisfy all constraints.Keywords: Singular value, optimisation, gearbox, torsional vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19463073 Analysis of the Evolution of Social and Economic Indicators of the Mercosur´s Members: 1980-2012
Authors: L. Aparecida Bastos, J. Leige Lopes, J. Crepaldi, R. Monteiro da Silva
Abstract:
The objective of this study is to analyze the evolution of some social and economic indicators of Mercosur´s economies from 1980 to 2012, based on the statistics of the Latin American Integration Association (LAIA). The objective is to observe if after the accession of these economies to Mercosur (the first accessions occurred in 1994) these indicators showed better performance, in order to demonstrate if economic integration contributed to improved trade, macroeconomic performance, and level of social and economic development of member countries. To this end, the methodologies used will be a literature review and descriptive statistics. The theoretical framework that guides the work are the theories of Integration: Classical Liberal, Marxist and structural-proactive. The results reveal that most social and economic indicators showed better performance in those economies that joined Mercosur after 1994. This work is the result of an investigation already completed.Keywords: Economic integration, mercosur, social indicators, economic indicators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12123072 Conventional and PSO Based Approaches for Model Reduction of SISO Discrete Systems
Authors: S. K. Tomar, R. Prasad, S. Panda, C. Ardil
Abstract:
Reduction of Single Input Single Output (SISO) discrete systems into lower order model, using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Modified Cauer Form (MCF) and differentiation are used. In this method the original discrete system is, first, converted into equivalent continuous system by applying bilinear transformation. The denominator of the equivalent continuous system and its reciprocal are differentiated successively, the reduced denominator of the desired order is obtained by combining the differentiated polynomials. The numerator is obtained by matching the quotients of MCF. The reduced continuous system is converted back into discrete system using inverse bilinear transformation. In the evolutionary technique method, Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.
Keywords: Discrete System, Single Input Single Output (SISO), Bilinear Transformation, Reduced Order Model, Modified CauerForm, Polynomial Differentiation, Particle Swarm Optimization, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19433071 Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions
Authors: Alaa Y. Ali, Natalie P. Holmes, John Holdsworth, Warwick Belcher, Paul Dastoor, Xiaojing Zhou
Abstract:
Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (Tsource) of 180 °C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces. Systematic variation of hydrogen gas (H2) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (Tgrowth) from 400 to 800 °C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 °C source carbon past the Cu foil at 600 °C for 1 min. The deposition at 600 °C with a H2 flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm-1 FWHM and a relative intensity ratio of the G to 2D bands (IG/I2D) of 0.21. This recipe fabricated a few layers of good quality graphene.
Keywords: Graphene, chemical vapour deposition, carbon source, low temperature growth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9083070 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.
Keywords: Product recommender system, Ensemble technique, Association rules, Decision tree, Artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42223069 Analysis of Residents’ Travel Characteristics and Policy Improving Strategies
Authors: Zhenzhen Xu, Chunfu Shao, Shengyou Wang, Chunjiao Dong
Abstract:
To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.Keywords: Travel characteristics analysis, transportation choice, travel sharing rate, neural network model, traffic resource allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6143068 Socio-Demographic Characteristics and Psychosocial Consequences of Sickle Cell Disease: The Case of Patients in a Public Hospital in Ghana
Authors: Vincent A. Adzika, Franklin N. Glozah, Collins S. K. Ahorlu
Abstract:
Background: Sickle Cell Disease (SCD) is of major public-health concern globally, with majority of patients living in Africa. Despite its relevance, there is a dearth of research to determine the socio-demographic distribution and psychosocial impact of SCD in Africa. The objective of this study therefore was to examine the socio-demographic distribution and psychosocial consequences of SCD among patients in Ghana and to assess their quality of life and coping mechanisms. Methods: A cross-sectional research design was used, involving the completion of questionnaires on socio-demographic characteristics, quality of life of individuals, anxiety and depression. Participants were 387 male and female patients attending a sickle cell clinic in a public hospital. Results: Results showed no gender and marital status differences in anxiety and depression. However, there were age and level of education variances in depression but not in anxiety. In terms of quality of life, patients were more satisfied by the presence of love, friends, relatives as well as home, community and neighbourhood environment. While pains of varied nature and severity were the major reasons for attending hospital in SCD condition, going to the hospital as well as having Faith in God was the frequently reported mechanisms for coping with an unbearable SCD attacks. Multiple regression analysis showed that some socio-demographic and quality of life indicators had strong associations with anxiety and/or depression. Conclusion: It is recommended that a multi-dimensional intervention strategy incorporating psychosocial dimensions should be considered in the treatment and management of SCD.
Keywords: Sickle cell disease, quality of life, anxiety, depression, socio-demographic characteristics, Ghana.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18263067 Ammonia Adsorption Properties of Composite Ammonia Carriers Obtained by Supporting Metal Chloride on Porous Materials
Authors: Cheng Shen, LaiHong Shen
Abstract:
Ammonia is an important carrier of hydrogen energy, with the characteristics of high hydrogen content density and no carbon dioxide emission. Safe and efficient ammonia capture for ammonia synthesis from biomass is an important way to alleviate the energy crisis and solve the energy problem. Metal chloride has a chemical adsorption effect on ammonia and can be desorbed at high temperatures to obtain high-concentration ammonia after combining with ammonia, which has a good development prospect in ammonia capture and separation technology. In this paper, the ammonia adsorption properties of CuCl2 were measured, and the composite adsorbents were prepared by using silicon and multi-walled carbon nanotubes, respectively to support CuCl2, and the ammonia adsorption properties of the composite adsorbents were studied. The study found that the ammonia adsorption capacity of the three adsorbents decreased with the increase in temperature, so metal chlorides were more suitable for the low-temperature adsorption of ammonia. Silicon and multi-walled carbon nanotubes have an enhanced effect on the ammonia adsorption of CuCl2. The reason is that the porous material itself has a physical adsorption effect on ammonia, and silicon can play the role of skeleton support in cupric chloride particles, which enhances the pore structure of the adsorbent, thereby alleviating sintering.
Keywords: Ammonia, adsorption properties, metal chloride, MWCNTs, silicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713066 Texture Based Weed Detection Using Multi Resolution Combined Statistical and Spatial Frequency (MRCSF)
Authors: R.S.Sabeenian, V.Palanisamy
Abstract:
Texture classification is a trendy and a catchy technology in the field of texture analysis. Textures, the repeated patterns, have different frequency components along different orientations. Our work is based on Texture Classification and its applications. It finds its applications in various fields like Medical Image Classification, Computer Vision, Remote Sensing, Agricultural Field, and Textile Industry. Weed control has a major effect on agriculture. A large amount of herbicide has been used for controlling weeds in agriculture fields, lawns, golf courses, sport fields, etc. Random spraying of herbicides does not meet the exact requirement of the field. Certain areas in field have more weed patches than estimated. So, we need a visual system that can discriminate weeds from the field image which will reduce or even eliminate the amount of herbicide used. This would allow farmers to not use any herbicides or only apply them where they are needed. A machine vision precision automated weed control system could reduce the usage of chemicals in crop fields. In this paper, an intelligent system for automatic weeding strategy Multi Resolution Combined Statistical & spatial Frequency is used to discriminate the weeds from the crops and to classify them as narrow, little and broad weeds.Keywords: crop weed discrimination, MRCSF, MRFM, Weeddetection, Spatial Frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18283065 Application of Transportation Linear Programming Algorithms to Cost Reduction in Nigeria Soft Drinks Industry
Authors: A. O. Salami
Abstract:
The transportation problems are primarily concerned with the optimal way in which products produced at different plants (supply origins) are transported to a number of warehouses or customers (demand destinations). The objective in a transportation problem is to fully satisfy the destination requirements within the operating production capacity constraints at the minimum possible cost. The objective of this study is to determine ways of minimizing transportation cost in order to maximum profit. Data were sourced from the records of the Distribution Department of 7-Up Bottling Company Plc., Ilorin, Kwara State, Nigeria. The data were computed and analyzed using the three methods of solving transportation problem. The result shows that the three methods produced the same total transportation costs amounting to N1, 358, 019, implying that any of the method can be adopted by the company in transporting its final products to the wholesale dealers in order to minimize total production cost.
Keywords: Allocation problem, Cost Minimization, Distribution system, Resources utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88033064 Assessing the Actual Status and Farmer’s Attitude towards Agroforestry in Chiniot, Pakistan
Authors: M. F. Nawaz, S. Gul, T. H. Farooq, M. T. Siddiqui, M. Asif, I. Ahmad, N. K. Niazi
Abstract:
In Pakistan, major demands of fuel wood and timber wood are fulfilled by agroforestry. However, the information regarding economic significance of agroforestry and its productivity in Pakistan is still insufficient and unreliable. Survey of field conditions to examine the agroforestry status at local level helps us to know the future trends and to formulate the policies for sustainable wood supply. The objectives of this research were to examine the actual status and potential of agroforestry and to point out the barriers that are faced by farmers in the adoption of agroforestry. Research was carried out in Chiniot district, Pakistan because it is the famous city for furniture industry that is largely dependent on farm trees. A detailed survey of district Chiniot was carried out from 150 randomly selected farmer respondents using multi-objective oriented and pre-tested questionnaire. It was found that linear tree planting method was more adopted (45%) as compared to linear + interplanting (42%) and/or compact planting (12.6%). Chi-square values at P-value <0.5 showed that age (11.35) and education (17.09) were two more important factors in the quick adoption of agroforestry as compared to land holdings (P-value of 0.7). The major reason of agroforestry adoption was to obtain income, fodder and fuelwood. The most dominant species in farmlands was shisham (Dalbergia sissoo) but since last five years, mostly farmers were growing Sufeida (Eucalyptus camaldulensis), kikar (Acacia nilotica) and popular (Populus deltoides) on their fields due to “Shisham die-back” problem. It was found that agro-forestry can be increased by providing good quality planting material to farmers and improving wood markets.Keywords: Agroforestry, trees, services, agriculture, farmers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17323063 A Case Study of Collective Action in Fishermen's Wives Group (KUNITA), Malaysia
Authors: Nor Hafizah S., Salfarina A. G., Intan Hashimah H., Juliana A. W.
Abstract:
Collective action can be an effective means for local development as well as important strategy to enhance livelihoods especially among rural people. This article explores the level of collective action among members of Fishermen-s Wives Group (KUNITA) in Malaysia. KUNITA was established by the Malaysian Fishery Development Authority (LKIM) with an objective to increase the socio-economic status of fishermen-s families. The members who are mostly the wives and daughters of fishermen are strongly encouraged by LKIM to venture into entrepreneurship activities. The objective of this research was to see the level of collective action among members in KUNITA groups in the state of Selangor. The finding shows that high level of collective action among KUNITA members is strongly based on volunteerism. However, the level of cooperation among members in the group is relatively low. The findings present significant challenges for the group in maintaining the sustainability of KUNITA organization.
Keywords: Collective action, entrepreneurship, fishermen' swives group, LKIM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19243062 Overview of Multi-Chip Alternatives for 2.5D and 3D Integrated Circuit Packagings
Authors: Ching-Feng Chen, Ching-Chih Tsai
Abstract:
With the size of the transistor gradually approaching the physical limit, it challenges the persistence of Moore’s Law due to such issues of the short channel effect and the development of the high numerical aperture (NA) lithography equipment. In the context of the ever-increasing technical requirements of portable devices and high-performance computing (HPC), relying on the law continuation to enhance the chip density will no longer support the prospects of the electronics industry. Weighing the chip’s power consumption-performance-area-cost-cycle time to market (PPACC) is an updated benchmark to drive the evolution of the advanced wafer nanometer (nm). The advent of two and half- and three-dimensional (2.5 and 3D)- Very-Large-Scale Integration (VLSI) packaging based on Through Silicon Via (TSV) technology has updated the traditional die assembly methods and provided the solution. This overview investigates the up-to-date and cutting-edge packaging technologies for 2.5D and 3D integrated circuits (IC) based on the updated transistor structure and technology nodes. We conclude that multi-chip solutions for 2.5D and 3D IC packaging can prolong Moore’s Law.
Keywords: Moore’s Law, High Numerical Aperture, Power Consumption-Performance-Area-Cost-Cycle Time to Market, PPACC, 2.5 and 3D-Very-Large-Scale Integration Packaging, Through Silicon Vi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283061 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model
Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi
Abstract:
Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25573060 Comparative Study of the Static and Dynamic Analysis of Multi-Storey Irregular Building
Authors: Bahador Bagheri, Ehsan Salimi Firoozabad, Mohammadreza Yahyaei
Abstract:
As the world move to the accomplishment of Performance Based Engineering philosophies in seismic design of Civil Engineering structures, new seismic design provisions require Structural Engineers to perform both static and dynamic analysis for the design of structures. While Linear Equivalent Static Analysis is performed for regular buildings up to 90m height in zone I and II, Dynamic Analysis should be performed for regular and irregular buildings in zone IV and V. Dynamic Analysis can take the form of a dynamic Time History Analysis or a linear Response Spectrum Analysis. In present study, Multi-storey irregular buildings with 20 stories have been modeled using software packages ETABS and SAP 2000 v.15 for seismic zone V in India. This paper also deals with the effect of the variation of the building height on the structural response of the shear wall building. Dynamic responses of building under actual earthquakes, EL-CENTRO 1949 and CHI-CHI Taiwan 1999 have been investigated. This paper highlights the accuracy and exactness of Time History analysis in comparison with the most commonly adopted Response Spectrum Analysis and Equivalent Static Analysis.
Keywords: Equivalent Static Analysis, Time history method, Response spectrum method, Reinforce concrete building, displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161453059 An Adaptive Memetic Algorithm With Dynamic Population Management for Designing HIV Multidrug Therapies
Authors: Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati
Abstract:
In this paper, a mathematical model of human immunodeficiency virus (HIV) is utilized and an optimization problem is proposed, with the final goal of implementing an optimal 900-day structured treatment interruption (STI) protocol. Two type of commonly used drugs in highly active antiretroviral therapy (HAART), reverse transcriptase inhibitors (RTI) and protease inhibitors (PI), are considered. In order to solving the proposed optimization problem an adaptive memetic algorithm with population management (AMAPM) is proposed. The AMAPM uses a distance measure to control the diversity of population in genotype space and thus preventing the stagnation and premature convergence. Moreover, the AMAPM uses diversity parameter in phenotype space to dynamically set the population size and the number of crossovers during the search process. Three crossover operators diversify the population, simultaneously. The progresses of crossover operators are utilized to set the number of each crossover per generation. In order to escaping the local optima and introducing the new search directions toward the global optima, two local searchers assist the evolutionary process. In contrast to traditional memetic algorithms, the activation of these local searchers is not random and depends on both the diversity parameters in genotype space and phenotype space. The capability of AMAPM in finding optimal solutions compared with three popular metaheurestics is introduced.Keywords: HIV therapy design, memetic algorithms, adaptivealgorithms, nonlinear integer programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16283058 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm
Authors: Xiang Jianhong, Wang Cong, Wang Linyu
Abstract:
With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.
Keywords: telemedicine, fetal electrocardiogram, compressed sensing, joint sparse reconstruction, block sparse signal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5113057 Simultaneous Saccharification and Fermentation(SSF) of Sugarcane Bagasse - Kinetics and Modeling
Authors: E.Sasikumar, T.Viruthagiri
Abstract:
Simultaneous Saccharification and Fermentation (SSF) of sugarcane bagasse by cellulase and Pachysolen tannophilus MTCC *1077 were investigated in the present study. Important process variables for ethanol production form pretreated bagasse were optimized using Response Surface Methodology (RSM) based on central composite design (CCD) experiments. A 23 five level CCD experiments with central and axial points was used to develop a statistical model for the optimization of process variables such as incubation temperature (25–45°) X1, pH (5.0–7.0) X2 and fermentation time (24–120 h) X3. Data obtained from RSM on ethanol production were subjected to the analysis of variance (ANOVA) and analyzed using a second order polynomial equation and contour plots were used to study the interactions among three relevant variables of the fermentation process. The fermentation experiments were carried out using an online monitored modular fermenter 2L capacity. The processing parameters setup for reaching a maximum response for ethanol production was obtained when applying the optimum values for temperature (32°C), pH (5.6) and fermentation time (110 h). Maximum ethanol concentration (3.36 g/l) was obtained from 50 g/l pretreated sugarcane bagasse at the optimized process conditions in aerobic batch fermentation. Kinetic models such as Monod, Modified Logistic model, Modified Logistic incorporated Leudeking – Piret model and Modified Logistic incorporated Modified Leudeking – Piret model have been evaluated and the constants were predicted.
Keywords: Sugarcane bagasse, ethanol, optimization, Pachysolen tannophilus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23023056 Night-Time Traffic Light Detection Based On SVM with Geometric Moment Features
Authors: Hyun-Koo Kim, Young-Nam Shin, Sa-gong Kuk, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective traffic lights detection method at the night-time. First, candidate blobs of traffic lights are extracted from RGB color image. Input image is represented on the dominant color domain by using color transform proposed by Ruta, then red and green color dominant regions are selected as candidates. After candidate blob selection, we carry out shape filter for noise reduction using information of blobs such as length, area, area of boundary box, etc. A multi-class classifier based on SVM (Support Vector Machine) applies into the candidates. Three kinds of features are used. We use basic features such as blob width, height, center coordinate, area, area of blob. Bright based stochastic features are also used. In particular, geometric based moment-s values between candidate region and adjacent region are proposed and used to improve the detection performance. The proposed system is implemented on Intel Core CPU with 2.80 GHz and 4 GB RAM and tested with the urban and rural road videos. Through the test, we show that the proposed method using PF, BMF, and GMF reaches up to 93 % of detection rate with computation time of in average 15 ms/frame.Keywords: Night-time traffic light detection, multi-class classification, driving assistance system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38853055 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.
Keywords: Curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5123054 Design and Application of NFC-Based Identity and Access Management in Cloud Services
Authors: Shin-Jer Yang, Kai-Tai Yang
Abstract:
In response to a changing world and the fast growth of the Internet, more and more enterprises are replacing web-based services with cloud-based ones. Multi-tenancy technology is becoming more important especially with Software as a Service (SaaS). This in turn leads to a greater focus on the application of Identity and Access Management (IAM). Conventional Near-Field Communication (NFC) based verification relies on a computer browser and a card reader to access an NFC tag. This type of verification does not support mobile device login and user-based access management functions. This study designs an NFC-based third-party cloud identity and access management scheme (NFC-IAM) addressing this shortcoming. Data from simulation tests analyzed with Key Performance Indicators (KPIs) suggest that the NFC-IAM not only takes less time in identity identification but also cuts time by 80% in terms of two-factor authentication and improves verification accuracy to 99.9% or better. In functional performance analyses, NFC-IAM performed better in salability and portability. The NFC-IAM App (Application Software) and back-end system to be developed and deployed in mobile device are to support IAM features and also offers users a more user-friendly experience and stronger security protection. In the future, our NFC-IAM can be employed to different environments including identification for mobile payment systems, permission management for remote equipment monitoring, among other applications.
Keywords: Cloud service, multi-tenancy, NFC, IAM, mobile device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11183053 Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime
Authors: Hyun-Koo Kim, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.Keywords: Traffic Light Detection, Multi-class Classification, Driving Assistance System, Haar-like Feature, Color SegmentationMethod, Shape Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27803052 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).
Keywords: Feature extraction, heart rate variability, hypertension, residual networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953051 Influence of Power Flow Controller on Energy Transaction Charges in Restructured Power System
Authors: Manisha Dubey, Gaurav Gupta, Anoop Arya
Abstract:
The demand for power supply increases day by day in developing countries like India henceforth demand of reactive power support in the form of ancillary services provider also has been increased. The multi-line and multi-type Flexible alternating current transmission system (FACTS) controllers are playing a vital role to regulate power flow through the transmission line. Unified power flow controller and interline power flow controller can be utilized to control reactive power flow through the transmission line. In a restructured power system, the demand of such controller is being popular due to their inherent capability. The transmission pricing by using reactive power cost allocation through modified matrix methodology has been proposed. The FACTS technologies have quite costly assembly, so it is very useful to apportion the expenses throughout the restructured electricity industry. Therefore, in this work, after embedding the FACTS devices into load flow, the impact on the costs allocated to users in fraction to the transmission framework utilization has been analyzed. From the obtained results, it is clear that the total cost recovery is enhanced towards the Reactive Power flow through the different transmission line for 5 bus test system. The fair pricing policy towards reactive power can be achieved by the proposed method incorporating FACTS controller towards cost recovery of the transmission network.
Keywords: Inter line power flow controller, Transmission Pricing, Unified power flow controller, cost allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6873050 The Effects of Spatial Dimensions and Relocation and Dimensions of Sound Absorbers in a Space on the Objective Parameters of Sound
Authors: Mustafa Kavraz
Abstract:
This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes. This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes.Keywords: Jnd, objective parameters of sound, room model, sound absorber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15473049 Experimental Testing of Statistical Size Effect in Civil Engineering Structures
Authors: Jana Kaděrová, Miroslav Vořechovský
Abstract:
The presented paper copes with an experimental evaluation of a model based on modified Weibull size effect theory. Classical statistical Weibull theory was modified by introducing a new parameter (correlation length lp) representing the spatial autocorrelation of a random mechanical properties of material. This size effect modification was observed on two different materials used in civil engineering: unreinforced (plain) concrete and multi-filament yarns made of alkaliresistant (AR) glass which are used for textile-reinforced concrete. The behavior under flexural, resp. tensile loading was investigated by laboratory experiments. A high number of specimens of different sizes was tested to obtain statistically significant data which were subsequently corrected and statistically processed. Due to a distortion of the measured displacements caused by the unstiff experiment device, only the maximal load values were statistically evaluated. Results of the experiments showed a decreasing strength with an increasing sample length. Size effect curves were obtained and the correlation length was fitted according to measured data. Results did not exclude the existence of the proposed new parameter lp.
Keywords: Statistical size effect, concrete, multi filaments yarns, experiment, autocorrelation length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19853048 The Significance of Awareness about Gender Diversity for the Future of Work: A Multi-Method Study of Organizational Structures and Policies Considering Trans and Gender Diversity
Authors: Robin C. Ladwig
Abstract:
The future of work becomes less predictable which requires increasing adaptability of organizations to social and work changes. Society is transforming regarding gender identity in the sense that more people come forward to identify as trans and gender diverse (TGD). Organizations are ill-equipped to provide a safe and encouraging work environment by lacking inclusive organizational structures. The qualitative multi-method research about TGD inclusivity in the workplace explores the enablers and barriers for TGD individuals to satisfactorily engage in the work environment and organizational culture. Furthermore, these TGD insights are analyzed based on organizational implications and awareness from a leadership and management perspective. The semi-structured online interviews with TGD individuals and the photo-elicit open-ended questionnaire addressed to leadership and management in diversity, career development, and human resources have been analyzed with a critical grounded theory approach. Findings demonstrated the significance of TGD voices, the support of leadership and management, as well as the synergy between voices and leadership. Hence, it indicates practical implications such as the revision of exclusive language used in policies, data collection, or communication and reconsideration of organizational decision-making by leaders to include TGD voices.
Keywords: Future of work, occupational identity, organizational decision-making, trans and gender diverse identity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 465