
 

 

 
Abstract—With the rise of medical IoT technologies, Wireless 

body area networks (WBANs) can collect fetal electrocardiogram 
(FECG) signals to support telemedicine analysis. The compressed 
sensing (CS)-based WBANs system can avoid the sampling of a large 
amount of redundant information and reduce the complexity and 
computing time of data processing, but the existing algorithms have 
poor signal compression and reconstruction performance. In this paper, 
a Joint block multi-orthogonal least squares (JBMOLS) algorithm is 
proposed. We apply the FECG signal to the Joint block sparse model 
(JBSM), and a comparative study of sparse transformation and 
measurement matrices is carried out. A FECG signal compression 
transmission mode based on Rbio5.5 wavelet, Bernoulli measurement 
matrix, and JBMOLS algorithm is proposed to improve the 
compression and reconstruction performance of FECG signal by CS-
based WBANs. Experimental results show that the compression ratio 
(CR) required for accurate reconstruction of this transmission mode is 
increased by nearly 10%, and the runtime is saved by about 30%. 
 

Keywords—Telemedicine, fetal electrocardiogram, compressed 
sensing, joint sparse reconstruction, block sparse signal.  

I. INTRODUCTION 
BANs can receive real-time FECG dynamic data via 
smartphones. Usually, its real-time data collection and 

computation make mobile phones consume a lot of energy [1]. 
Using CS technology [2] can avoid sampling large amounts of 
redundant information and reduce the complexity and 
computation time of data processing. Thereby, the power 
consumption of the device can be reduced. This application is 
widely used in the prevention of fetal Congenital Heart Disease 
(CHD) [3], so the research on the FECG estimation algorithm 
has become a hot issue in the past two years. 

Compared with Discrete Wavelet Transform (DWT)-based 
compression, CS-based WBANs systems exhibit poor 
compression performance and signal reconstruction quality [4]. 
Therefore, improving the performance of CS-based signal 
compression and reconstruction can better facilitate the 
application of WBANs systems. FECG signals are embedded 
in strong noise and artifacts caused by maternal ECG, 
instrument noise, and abdominal EMG [5], so the detection of 
FECG signals usually uses multiple channels. It can be seen 
from Fig. 1 that the FECG signals of different channels have 
similar structural information. After wavelet transform, the 
FECG signals of different channels show joint features and 
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block sparse features in the wavelet domain, that is, the FECG 
signals of different channels are similar in distribution but 
values are different, and the non-zero terms of the signal appear 
in the block, as shown in Fig. 2. Therefore, for optimal 
performance, FECG compression techniques that exploit the 
joint properties of multiple channels and block sparse properties 
should be considered. 

 

 

Fig. 1 8-channel FECG signal 
 

In [6], the authors proposed a weighted L1,2 minimization 
(WL12M) method to reconstruct MECG and FECG signals. It 
utilizes inter-channel priors and multi-source priors in the 
wavelet domain for MECG and FECG signal reconstruction, 
proving that utilizing FECG inter-channel correlation can 
improve reconstruction performance. This algorithm is an 
optimization algorithm, which can be accurately reconstructed 
under a high CR, but the running time is too long to meet the 
real-time requirements of the WBANs system. Reference [7] 
proposed a JBSM based on the joint feature of the signal and 
the block sparse feature. The joint block sparse reconstruction 
algorithm can be used to reconstruct the signal conforming to 
the model, with improved accuracy and running time. The 
author proposes the JBOMP algorithm, but this algorithm is 
only a simple improvement of the traditional BOMP algorithm. 
When the CR is high, it cannot reconstruct signals accurately. 
Reference [8] proposes a block sparse MECG compression 
scheme, which effectively utilizes the spatiotemporal 
correlation and multi-scale information of the wavelet domain 
MECG data, and proposes the WJCS algorithm, which is 
superior to the WL12M algorithm in reconstruction 
performance and running time, but the time consumption of the 
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algorithm is still too large. Reference [9] proposed a non-
iterative ECG reconstruction (CSNet) algorithm based on deep 
learning technology, which combines CNN and LSTM to 
directly learn the mapping relationship between measured 
values and original signals. Under high CR, the signal 

reconstruction accuracy and reconstruction speed are better 
than traditional reconstruction algorithms. However, deep 
learning methods require extensive training, consume a lot of 
resources, and are difficult to implement in hardware. 

 

 

Fig. 2 DWT domain waveform of FECG signal 
 

Different wavelet base types have different performances for 
the sparse representation of different signals, but the current 
research on the sparse representation of FECG signals is not 
enough. Qu et al. [10] compared the reconstruction errors of 
several wavelet bases and believed that the reconstruction error 
of the coif5 wavelet base was relatively small. However, this 
conclusion only comes from the simulation results of the same 
ECG data and cannot be applied to other situations. The 
simulation only selects 6 wavelet bases for comparison, 
ignoring the effects of the changes in the internal parameters of 
the wavelet bases. Mishra et al. [11] studied different wavelet 
bases and gave the optimal wavelet bases under several CRs. 
However, the obtained wavelet-based sparse representation 
performance results are only applicable to specific conditions. 
When testing with other ECG signals, or changing the CR and 
recovery algorithm, the reconstruction accuracy of the signal 
will be affected. 

For multi-channel FECG signals, a JBMOLS algorithm 
based on JBSM is proposed. A comparative experiment is set 
up for all kinds of wavelet bases and measurement matrices, and 
the optimal wavelet bases and optimal measurement matrices 
suitable for these FECG signals are obtained, which provides a 
practical basis for practical applications. 

A. Contribute 
 A JBMOLS algorithm is proposed. It utilizes the joint 

features and block sparse characteristics of FECG signals, 
uses the block orthogonal projection method to solve the 
problem of low atomic selection accuracy for block sparse 
signals, and uses multiple selections and backtracking to 
solve the problem of too many algorithm iterations and 
long running time. 

 A WBANs simulation experiment system is established. 
First, the compression performance of 52 wavelet bases 
and 7 measurement matrices for different combinations of 

FECG signals is verified, and the most suitable Rbio5.5 
wavelet and Bernoulli measurement matrices for FECG 
signals are obtained. On the other hand, it is verified that 
the reconstruction ability and algorithm running time of the 
JBMOLS algorithm are superior to similar algorithms. 

 Based on the JBMOLS algorithms, FECG signals 
compression and transmission mode is proposed, which 
combines Rbio5.5 wavelet, Bernoulli measurement matrix, 
and JBMOLS algorithm. Its performance was proved by 
experiments, which improved the compression and 
reconstruction performance of CS-based WNANs systems. 

B. Thesis Notation 
The notations covered in this paper are summarized as 

follows: For all , we define the set  as . For
, represents the  absolute value. The vector spaces of 

 tuples and  matrices are denoted by  and , 
respectively. We will use  to represent matrices. The 
i-th column of the matrix  is denoted by , its submatrix is 
denoted by , where  denotes the column index of the atoms 
in the submatrix, and . represents the value  of the k-
th iteration. For any subspace  belongs to , represents 
the projection on . represents the transpose of a vector . 
We denote the measurement matrix by . is the 
spatial extent spanned by the column . indicates the 
range space spanned by the column of , for which  is the i-
th column of . 

II. BACKGROUND 

A. Compressed Sensing 
CS theory breaks through the requirements of Nyquist 

sampling theorem, compresses and samples signals with a 
sampling number far lower than traditional sampling 
techniques. CS proves that it is possible to accurately 
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reconstruct signals from signals with some sparse coefficients, 
reducing the storage and transmission requirements of the data 
acquisition system. 

First, we assume that the original signal 
 is a one-dimensional discrete signal. If given a set 

of standard orthonormal basis , such as 
(1): 

         (1) 
 

is the column vector of , the coefficient is , 
the representation of the signal  in the  transform domain is

.  is the  matrix,  is the  matrix,  is the  
matrix. If the signal  has only  non-zero values in the  
transform domain, or only  large coefficients ( ), the  
signal is considered to be sparse, and the signal  can be 
represented by  large coefficients. 

The theory of CS requires that the signal is sparse, or it is 
sparse after a certain transformation, which is also called the 
prior condition of CS. Assuming that the signal  is  sparse 
on the orthonormal basis , a measurement 
matrix  with low correlation with the sparse basis  can be 
selected to observe the signal, which  is a  matrix, and

. The measured value  is obtained, in which  is 
 the matrix, such as (2): 

           (2) 

Finally, the CS utilizes the small number of measurements y 
and measurement matrices  to recover the signal , solving 
the optimization problem under the 0-norm, such as (3): 

 
0

arg min
. .  s t y x

arg minarg min

      
 (3) 

The only deterministic solution  can be obtained. However, 
the optimization problem under 0-norm is an NP-hard non-
convex optimization problem, so the -norm is usually used to 
replace the non-convex optimization problem, such as (4): 

 
1

arg min
. .  s t y x

arg minarg min

      
 (4) 

This transforms the problem in the equation into a convex 
optimization problem, which can be transformed into a linear 
programming problem to solve, and the signal  can be obtained 
by substituting into (1). 

B. Joint Block Sparse Model 
Traditional CS only considers the sparse signal with the most 

 non-zero elements, and does not involve the structure of the 
signal itself. In practical problems, some sparse signals will 
exhibit a special structure with non-zero elements appearing in 
blocks. Such a signal is called a block sparse signal. Given a 
block {d ,d d }, a block sparse signal  can be 

described as: 
 
  (5) 

 
where  is the -th block in the source signal and  is the 
size of each block. 

Correspondingly, the measurement matrix can 
also be described in the following form: 

 
(6) 

 
The CS mathematical model of block signals can be 

described as 
 

         (7) 
 
For a given block , the signal  has at most  non-zero 

block, as 
 

 
      

 (8) 
 
It is called a  sparse block signal, where the  is the 

indicator function, satisfying 
 

 1   0 
( )

0   0 
x

I x
x          

 (9) 

 
In fact, at that time , the block sparse 

signal model degenerated into the traditional sparse signal 
model. 

When a group of block sparse signals has joint features, that 
is the non-zero coefficients of the group of signals appear in the 
same position, only the values are different, the signal model 
becomes the block sparse signal model with joint features as 
shown in Fig. 3, which is called JBSM [7]. In Fig. 3,  
represents the -th signal in a set of joint signals,  
represents the -th block in the block sparse signal, with black 
dots representing values there and white dots representing zeros 
there. It can be observed that each channel of the multi-channel 
FECG signals after wavelet transformation has joint features, 
and each channel signal has the block sparse feature, which 
conforms to JBSM and can be reconstructed by the joint block 
sparse algorithm. 

III. WAVELET SPARSE TRANSFORM AND MEASUREMENT 
MATRIX 

A. Wavelet Sparse Transform 
There are 6 kinds of wavelet basis for sparse basis, 

considering parameter changes, there are 52 kinds in total:
; )10( 2Dbn n ; ) 2 8(Symn n ; 

)1 5(Coifn n ;  ( = 1, = 1, 3, 5; = 2, = 
2, 4, 6, 8; = 3, = 1, 3, 5, 7, 9; = 4, = 4; = 5, = 5; 
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= 6, = 8); .r dRbio n n (  = 1, = 1, 3, 5; = 2, = 2, 
4, 6, 8; = 3, = 1, 3, 5, 7, 9; = 4, = 4; = 5, = 5; 

= 6, = 8). 
 

1(1: )ax n

(2)x (3)x ( 2)ax n ( )ax n(1)x

2 (1: )ax n

(1: )n ax n

{
{

{
1(1: )n ax n {

1(1: )N ax n {
(1: )N ax n {

 

Fig. 3 Schematic diagram of the JBSM 
 
In this paper, a WBANs simulation experiment system is 

built, which can simulate the signal transmission process. We 
select the FECG data (signal 01) in the OSET Fetal ECG 
database [12] as the signal sample, and select a segment with a 
length of 1024 sampling points as the sample in this experiment. 
The measurement matrix is selected as the Bernoulli matrix, 
and the recovery algorithm is the Orthogonal Matching Pursuit 
(OMP) algorithm [13]. Using 52 kinds of wavelet bases as 
experimental variables, 8 channels of FECG signals were 
simulated under 15 kinds of CR. Each group of experiments 
was repeated 10 times, and the average value was taken as the 
experimental data, for a total of 62,400 experiments. 

This paper adopts CR, Percent root means square difference 
(PRD) [14], and Reconstruction rate as performance evaluation 
metrics. CR describes the effect of compressed data, that is, the 
ratio of the reduced length of the compressed signal to the 
length of the original signal. The higher the CR, the more 
difficult the reconstruction. Let the length of the original signal 
is N and the number of measurement points is M, then 

 
 %

       
 (10) 

 
PRD describes the difference between the reconstructed 

signal and the original signal, set  as the original signal and  
as the reconstructed signal, then 

 

 %        (11) 
 
Reconstruction rate describes the success rate of signal 

reconstruction in multiple experiments. It is generally 
considered that  is the ideal reconstructed signal, 
the test was successful, then 

 
   

 
Success timesReconstruction rate
Total times

    (12) 

 
In experiments,  reconstruction will be 

considered a success. If multiple groups of wavelet bases are 
successfully reconstructed, the first three groups with the 
smallest PRD are selected and recorded in the table. If all 
wavelet bases fail to be reconstructed successfully, we select a 
set of records with the smallest PRD to enter the table. The 
experimental results are shown in Table Ⅰ. It can be seen from 
the analysis that the influence of different wavelet bases on the 
reconstruction effect will change due to the change of the CR, 
and the Rbio5.5 wavelet has the best sparse representation 
effect on FECG signals under different CRs. 

B. Measurement Matrix 
The observation matrix needs to satisfy the Restricted 

equidistant property (RIP), so that the original signal can be 
recovered with high probability during the reconstruction stage 
[15]. The RIP criterion is shown in (13): 

 

 2 2 2

2 2 2
S Sl l l

X X X1- 1+       (13) 
 
where:  is the Restricted Isometric Constant (RIC) [16], 
required . 

We selected signal01 in the OSET fetal ECG database as the 
signal sample, and the fragment with a length of 256 sampling 
points are selected as the sample of this experiment.  

We selected the Gaussian random matrix, Bernoulli matrix, 
Circulant matrix, Partial Hadamard matrix, Toeplitz matrix, 
Partial Fourier matrix and Sparse random matrix as the 
measurement matrix of the research object.The classical 
Orthogonal matching pursuit algorithm (OMP) is used to 
complete the signal reconstruction.  

The relationship between the observation value M  and the 
Reconstruction rate under different observation matrices is 
drawn. Each group of experiments is repeated 100 times, and 
the average value is taken as the experiment data, as shown in 
Fig. 4. It can be seen from Fig. 4 that the Reconstruction rate 
increases significantly as M increases (the CR decreases). For 
different wavelet sparsity, the reconstruction performance of 
the Gaussian measurement matrix and Bernoulli measurement 
matrix is better than other matrices, while the Bernoulli 
measurement matrix is slightly earlier than Gaussian matrix and 
reaches 100% reconstruction ability, and the Bernoulli 
observation matrix elements are ± 1, which is easier to 
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implement in hardware. 
 

TABLE Ⅰ 
WAVELET BASIS WITH BETTER PERFORMANCE UNDER VARIOUS CRS 

CR FECG1 FECG2 FECG3 FECG4 FECG5 FECG6 FECG7 FECG8 
10% rbio5.5 

coif5 
bior2.8 

rbio5.5 
db10 
db9 

coif4 
sym6 

rbio5.5 

db9 
db10 

rbio5.5 

bior1.5 
db10 
db9 

db9 
coif4 
sym7 

sym8 
db9 

bior2.8 

rbio5.5 
coif5 
db9 

15% rbio5.5 
bior2.8 
coif5 

rbio5.5 
coif5 db10 

coif4 
rbio5.5 
sym8 

db9 
rbio5.5 

db10 

rbio5.5 
db9 

coif4 

rbio5.5 
sym7 
db8 

rbio5.5 
coif4 

bior2.8 

rbio5.5 
bior2.8 

db7 
20% rbio5.5 

bior2.8 
bior3.9 

rbio5.5 
bior2.8 
bior2.6 

rbio5.5 
bior2.8 
bior3.9 

rbio5.5 
bior3.9 

db9 

rbio5.5 
bior3.9 
bior2.8 

rbio5.5 
bior2.8 
bior3.9 

rbio5.5 
bior2.8 
bior3.9 

rbio5.5 
bior2.8 
bior2.6 

25% rbio5.5 
bior2.8 
bior2.6 

rbio5.5 
bior3.9 
bior2.8 

rbio5.5 
bior3.9 
bior2.8 

bior3.9 
bior2.8 
rbio5.5 

bior3.9 
rbio5.5 
bior3.7 

rbio5.5 
bior2.8 
bior3.9 

bior2.8 
rbio5.5 
bior3.9 

rbio5.5 
bior3.9 
bior2.8 

30% rbio5.5 
bior3.9 
bior2.8 

bior3.9 
rbio5.5 
bior2.8 

bior3.9 
rbio5.5 
bior2.8 

bior3.9 
rbio5.5 
bior3.7 

bior3.9 
rbio5.5 
bior3.7 

rbio5.5 
bior3.9 
bior3.7 

bior3.9 
rbio5.5 
bior3.7 

bior3.9 
rbio5.5 
bior2.8 

35% rbio5.5 
bior3.9 
bior3.7 

bior3.9 
rbio5.5 
bior2.8 

bior3.9 
bior2.8 
bior3.7 

bior3.9 
bior3.7 
rbio5.5 

bior3.9 
rbio5.5 
bior2.8 

rbio5.5 
bior3.9 
bior3.7 

bior3.9 
rbio5.5 
bior3.7 

bior3.9 
rbio5.5 
bior3.7 

40% rbio5.5 
bior2.8 
bior2.6 

bior3.9 
rbio5.5 
bior3.7 

rbio5.5 
bior2.8 
bior3.9 

bior3.7 
bior3.9 
rbio5.5 

bior3.9 
rbio5.5 
bior3.7 

bior3.7 
rbio5.5 
bior3.9 

rbio5.5 
bior3.7 
bior2.8 

bior3.9 
rbio5.5 
bior3.7 

45% rbio5.5 
bior2.8 
bior2.6 

rbio5.5 
bior3.9 
bior3.7 

rbio5.5 
bior3.7 
bior3.9 

rbio5.5 
bior3.7 
bior2.8 

rbio5.5 
bior3.9 
bior2.8 

rbio5.5 
bior3.7 
bior3.9 

rbio5.5 
bior2.8 
bior3.7 

rbio5.5 
bior2.6 
bior2.8 

50% rbio5.5 
bior2.8 
bior2.6 

rbio5.5 
bior3.9 
bior3.7 

rbio5.5 
bior3.9 
bior2.6 

rbio5.5 
bior3.7 
bior2.6 

rbio5.5 
bior3.9 
bior2.8 

rbio5.5 
bior2.8 
bior3.9 

rbio5.5 
bior2.8 
bior2.6 

rbio5.5 
bior2.8 
bior2.6 

55% rbio5.5 
bior2.8 
bior2.6 

rbio5.5 
bior2.8 
bior3.9 

rbio5.5 
bior3.9 
bior3.5 

rbio5.5 
bior2.8 
bior2.6 

rbio5.5 
bior3.9 
bior2.8 

bior3.9 
rbio5.5 
bior2.8 

rbio5.5 
bior2.8 
bior2.6 

rbio5.5 
bior2.8 
coif5 

60% rbio5.5 
bior2.6 
bior2.8 

rbio5.5 
bior2.8 
bior3.9 

rbio5.5 
bior2.8 
bior3.9 

rbio5.5 rbio5.5 
bior2.8 
bior3.9 

rbio5.5 
bior3.7 
bior2.8 

rbio5.5 
bior2.8 

db7 

rbio5.5 
bior2.8 
bior2.6 

65% rbio5.5 
bior2.8 
bior2.6 

rbio5.5 
bior2.8 
coif4 

rbio5.5 
bior2.8 
coif5 

rbio5.5 rbio5.5 
bior1.5 
bior2.8 

rbio5.5 
bior2.8 
bior2.6 

rbio5.5 
coif5 

bior2.8 

rbio5.5 
coif5 

bior3.9 
70% rbio5.5 

bior2.8 
bior2.6 

rbio5.5 rbio5.5 
bior1.5 
bior2.8 

rbio5.5 rbio5.5 
bior3.9 
bior2.8 

rbio5.5 
bior2.8 
bior2.6 

rbio5.5 rbio5.5 
coif5 

75% rbio5.5 rbio5.5 rbio5.5 
sym7 

bior1.5 

rbio5.5 rbio5.5 rbio5.5 
db10 
coif3 

rbio5.5 rbio5.5 

80% bior1.5 rbio5.5 rbio5.5 rbio5.5 rbio5.5 rbio5.5 rbio5.5 rbio5.5 

 
By comparing the Reconstruction rate of various wavelet 

bases on the original signal in Fig. 4, the influence of selecting 
different wavelet bases on signal reconstruction can be verified 
again. For example, the Rbio3.3 wavelet cannot achieve 
accurate reconstruction, while the Rbio5.5 wavelet achieves 
accurate reconstruction can be done with smaller . Therefore, 
based on the above analysis, considering the realization of the 
embedded hardware system, the Rbio5.5 wavelet is used to 
construct the sparse.  

IV. RECONSTRUCTION ALGORITHM 
CS reconstruction algorithms are mainly divided into two 

categories: convex optimization algorithms and greedy 
algorithms. The reconstruction performance of the convex 
optimization algorithm is excellent, but the running time of the 
algorithm is much higher than that of the greedy algorithm. 
Greedy algorithms are mainly two different methods for the 
sparse reconstruction problem, one is the OMP algorithm, and 

the other is the Orthogonal Least Squares (OLS) algorithm [17]. 
The OMP means that in the process of atom selection, the atom 
with the largest inner product value is selected, that is, the most 
relevant atom; the OLS atom is selected in a different way. 
After orthogonal projection of all atoms, the atom with the 
smallest iteration residual is selected. Atoms are selected into 
the support set, and atoms to be selected in subsequent iterations 
must be combined with previously selected atoms to minimize 
the residual value. Compared with the OMP algorithm, the OLS 
algorithm can complete accurate reconstruction with less 
sparsity. However, the OMP algorithm only needs to perform 
the linear product of the summation  and r in each iteration to 
achieve atom selection, which is relatively simple; but the OLS 
requires  orthogonal projection ( measures the 
number of matrix columns and the number t  of iterations), and 
the computational complexity is high. It can be said that it 
consumes a certain amount of running time in exchange for a 
higher quality of reconstruction. 
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Fig. 4 Reconstruction rate of FECG signal under different sparse wavelets and measurement matrices 
 

A. Algorithm Introduction 
The JBMOLS algorithm proposed in this paper utilizes the 

joint features of the signal itself and uses the atomic selection 
method of the Block Orthogonal Least Squares (BOLS) 
algorithm [18] to reconstruct the joint block sparse signal. 
Reference [19] proves that since the OLS algorithm has a more 
accurate advantage in atom selection, multiple atoms can be 
selected simultaneously when multiple atoms are selected into 
the support set. Based on this, the JBMOLS algorithm sorts all 
the atoms that meet the requirements according to the iterative 
residual, and selects multiple atomic blocks into the support set 
at a time. 

 Combined with the backtracking idea [20], when the block 
sparsity is greater than K, the optimal K atomic blocks are 
selected. In this way, the end of the JBMOLS algorithm is not 
limited by the block sparsity K, and the threshold method is 
used. When the residual of the reconstructed signal is less than 
a given threshold, the loop will be jumped out. 

Before explaining the JBMOLS algorithm, we need to 
introduce the concept of subspace distance, which will be 

applied to the identification step of the algorithm. 
Theorem 1. (Subspace distance [21]) Define  and  as the 
subspace of , let and  be the dimension of  and  
respectively. If  and  are the 
orthonormal basis of the  and  respectively, the distance 

 between the  and  is defined as follows: 
 

 
1 2 2

1 2 1 2
1 1

( , ) max{ , } ,
d d

i j
i j

d S S d d u v    (14) 

 
The following is an analysis of the specific implementation 

process of the JBMOLS algorithm: 
JBMOLS algorithm selects atoms according to the angle 

between the projection vector and the residual, that is, selects 
the column with the smallest subspace distance. The signal 
processed by the JBMOLS algorithm is a block sparse signal 
with joint features. At each iteration, the algorithm computes 
the subspace distance  of each atomic residual space 

k  from the latest estimated space , and using 
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the joint features of the aN  group signals, computes the 
minimum value . The joint sparse signal 
has the smallest subspace distance at this atom. Since the signal 
is a block sparse signal, it is necessary to find the best matching 
block of atoms rather than a single atom. When calculating 

, it will be evenly distributed  according 
to the block length , and the atom with the smallest median 
value  corresponds to the smallest atomic block index. At each 
iteration, u  will be sorted and the top  most suitable atomic 
block indices will be selected into the support set. When the 
number of indices in the support set is greater than the sparsity 
K, the subspace distances of all atoms in the support set are 
calculated, and the optimal K atomic blocks are selected. Since 
the JBMOLS algorithm is not limited by the sparsity K, given 
the threshold  and the maximum number of iterations , when 
the residual error of the reconstructed signal is less than the 
given threshold or reaches the maximum number of iterations, 
it will jump out of the loop. In CS reconstruction, it is generally 
considered that the residual value  reconstruction is 
successful, so it is assumed . The algorithm flow is 
shown in Table Ⅱ. 

B. Algorithm Complexity Analysis 
According to the analysis of the literature [22], it can be seen 

that the calculation amount of BOMP algorithm to calculate a 
group of  signals is about , and the calculation 
amount of BOLS algorithm to calculate a group of signals is 
about . Because the OLS algorithm is more time-
consuming, the . Reference [22] 
points out that the calculation amount of the JBOMP algorithm 
is , but due to the difference in the reconstruction of 
the sub-blocks of the algorithm, the calculation amount will be 
smaller than that of BOMP,

. Since the JBMOLS algorithm 
selects L  atoms at a time, the number of iterations becomes the 
original 1 L  and the computational complexity is 

. So, we get the algorithm complexity comparison as

. 

C. FECG Signal Reconstruction Experiment 
Through the analysis in the previous sections, we propose a 

FECG signal compression transmission mode which combines 
Rbio5.5 wavelet, Bernoulli measurement matrix and JBMOLS 
algorithm. In order to verify the effect of this transmission 
method, the following experiments are carried out on the 
WBANs simulation experimental system. In the experiment, 
the FECG data (signal 01) in the OSET Fetal ECG database 
were selected as the signal sample, and a segment with a length 
of 512 sampling points was selected as the sample of this 
experiment. We select WL12M algorithm and BOLS, BOMP, 
JBOMP as sparse recovery algorithms. The performance 
indicators are CR and Reconstruction rate. CR is selected as the 
sampling interval 1.5% in the range of 62.5%~85%. The 
reconstruction ability and running time of different algorithms 
are compared, and the simulation is performed 1000 times. It is 

considered that PRD <= 10% indicates that the reconstruction 
is successful, and the Reconstruction rate is counted as the 
success rate, and the time average is taken. 

 
TABLE Ⅱ 

JBMOLS ALGORITHM 
Inputs: Measurement data m , Measurement matrix  

Sparsity , Block Length , Number of Choices  
Initialization: Reconstruction results , Support sets , 

Residuals , Thresholds ,Iterations , 
Maximum iterations number , Number of atoms  

While  or  or  do 
   
   

 h   

  
  

  
End  

While  or  or  do 
   

 
  

  
  

  
End  

Output:  and  
 

It can be seen from Table Ⅲ that the JBMOLS algorithm 
proposed in this paper can successfully complete 1000 
experiments when CR = 76%, which is much higher than the 
67% compression rate required by the JBOMP algorithm. 
However, compared with the WJCS algorithm and the WL12M 
algorithm, there is still a certain gap. When CR = 80.5%, both 
WJCS algorithm and WL12M algorithm can successfully 
complete all reconstructions. 

 
TABLE Ⅲ 

RECONSTRUCTION RATE OF EACH ALGORITHM UNDER DIFFERENT CR 
CR/% JBMOLS WCJS WL12M JBOMP BOMP BOLS 

85 0.006 0.832 0.769 0.002 0 0 
83.5 0.249 0.909 0.874 0.156 0 0 
82 0.735 0.994 0.986 0.451 0 0.001 

80.5 0.949 1 1 0.66 0 0.007 
79 0.994 1 1 0.841 0 0.025 

77.5 0.999 1 1 0.913 0 0.083 
76 1 1 1 0.97 0.003 0.172 

74.5 1 1 1 0.982 0.021 0.318 
73 1 1 1 0.984 0.097 0.461 

71.5 1 1 1 0.997 0.272 0.631 
70 1 1 1 0.997 0.443 0.692 

68.5 1 1 1 0.995 0.615 0.803 
67 1 1 1 1 0.735 0.86 

65.5 1 1 1 1 0.811 0.893 
64 1 1 1 1 0.88 0.926 

62.5 1 1 1 1 0.917 0.942 
 
It can be seen from Table Ⅳ that when , the time 
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required by the JBOMP algorithm is the least. When
, the running time required by the JBMOLS algorithm is 

less than that of the JBOMP algorithm. This is because the 
JBMOLS algorithm uses a threshold method to jump out. In the 
case of high CR, in order to meet the requirements of the 
algorithm reconstruction accuracy, the number of iterations is 
relatively large, so the time required exceeds the JBOMP 
algorithm. But with the increase of the CR, the JBMOLS 
algorithm performs better, which can save about 30% of the 
running time compared with the JBOMP algorithm. The WJCS 
algorithm and the WL12M algorithm are optimization 
algorithms, and their running time is two orders of magnitude 
higher than the greedy algorithm. 

 
TABLE Ⅳ 

RUNNING TIME OF EACH ALGORITHM UNDER DIFFERENT CR 
CR/% JBMOLS WJCS WL12M JBOMP BOMP BOLS 

85 0.2605 3.50 3.81 0.1181 0.1777 0.2828 
83.5 0.2251 3.56 3.96 0.1192 0.1763 0.2830 
82 0.1402 3.65 4.29 0.1214 0.1786 0.2823 

80.5 0.1079 3.68 4.50 0.1312 0.1907 0.3005 
79 0.1008 3.71 4.50 0.1372 0.1976 0.3125 

77.5 0.0976 3.72 4.51 0.1346 0.1944 0.3085 
76 0.0970 3.76 4.52 0.1360 0.1961 0.3115 

74.5 0.0886 3.83 4.54 0.1255 0.1752 0.2784 
73 0.0913 3.84 4.58 0.1289 0.1805 0.2864 

71.5 0.0911 3.88 4.52 0.1265 0.1766 0.2834 
70 0.0915 3.94 4.50 0.1287 0.1789 0.2857 

68.5 0.0924 3.95 4.53 0.1301 0.1801 0.2892 
67 0.0936 3.99 4.53 0.1286 0.1785 0.2875 

65.5 0.1009 4.03 4.57 0.1336 0.1902 0.3017 
64 0.1022 4.13 4.57 0.1367 0.1984 0.3125 

62.5 0.1023 4.14 4.60 0.1374 0.1993 0.3172 
 
In general, the optimization algorithm can complete the 

accurate reconstruction of the signal with a high compression 
rate, but the time required for this algorithm is too long, with an 
average running time of 3s-4s. The JBMOLS algorithm 
proposed in this paper is a greedy algorithm. Compared with 
the JBOMP algorithm, which is also a greedy algorithm, it has 
obvious advantages in terms of CR and running time required 
for accurate reconstruction. Compared with the two 
optimization algorithms, the average running time of the 
JBMOLS algorithm is only 0.1s, and when CR = 80.5%, 
JBMOLS achieves 94.9% reconstruction rate. 

V. SUMMARIZE 
In the application of WBANs for FECG signals, CS 

technology can improve energy utilization efficiency, but it 
must ensure that important information is not lost. In this paper, 
the JBMOLS algorithm is proposed. The success rate of this 
algorithm in the actual FECG signal transmission is close to the 
optimization algorithm. The JBMOLS algorithm is better than 
other greedy algorithms and takes less time. After comparative 
experiments, the proposed FECG signal compression 
transmission method combining Rbio5.5 wavelet, Bernoulli 
measurement matrix and JBMOLS algorithm can ensure short 
signal transmission and reconstruction process time and high 

success rate. 
For the sparse representation and compression of the signal, 

this paper only compares the existing wavelet basis and the 
existing measurement matrix through experimental simulation, 
and selects the Rbio5.5 wavelet and Bernoulli measurement 
matrix that are most suitable for FECG signal transmission. The 
next step should be to try to innovate in these two aspects to 
make it more suitable for WBANs hardware system for FECG 
remote monitoring. 
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