Search results for: skin detection
89 Incidence of Fungal Infections and Mycotoxicosis in Pork Meat and Pork By-Products in Egyptian Markets
Authors: Ashraf S. Hakim, Randa M. Alarousy
Abstract:
The consumption of food contaminated with molds (microscopic filamentous fungi) and their toxic metabolites results in the development of food-borne mycotoxicosis. The spores of molds are ubiquitously spread in the environment and can be detected everywhere. Ochratoxin A is a toxic and potentially carcinogenic fungal toxin found in a variety of food commodities. In this study, the mycological quality of various ready-to-eat local and imported pork meat and meat byproducts sold in Egyptian markets were assessed and the presence of various molds was determined in pork used as a raw material, edible organs as liver and kidney as well as in fermented raw meat by-products. The study assessed the mycological quality of pork raw meat and their by-products sold in commercial shops in Cairo, Egypt. Mycological analysis was conducted on (n=110) samples which included pig’s livers and kidneys from Egyptian Bassatin slaughter house; local and imported processed pork meat by-products from Egyptian pork markets. The isolates were identified using traditional mycological and biochemical tests. All kidney and liver samples were positive to molds growth while all byproducts were negative. Ochratoxin A levels were quantitatively analyzed using the high performance liquid chromatography (HPLC) and the highest results were present in kidney 7.51 part per billion (ppb) followed by minced meat 6.19 ppb generally the local samples showed higher levels than the imported ones. To the best of our knowledge, this is the first report on mycotoxins detection and quantification from pork by-products in Egypt.Keywords: Egypt, imported pork by-products, local, mycotoxins.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197788 Clinical Signs of Neonatal Calves in Experimental Colisepticemia
Authors: Samad Lotfollahzadeh
Abstract:
Escherichia coli (E. coli) is the most isolated bacteria from blood circulation of septicemic calves. Given the prevalence of septicemia in animals and its economic importance in veterinary practice, better understanding of changes in clinical signs following disease, may contribute to early detection of disorder. The present study has been carried out to detect changes of clinical signs in induced sepsis in calves with E. coli. Colisepticemia has been induced in 10 twenty-day old healthy Holstein- Frisian calves with intravenous injection of 1.5 X 109 colony forming units (cfu) of O111:H8 strain of E. coli. Clinical signs including rectal temperature, heart rate, respiratory rate, shock, appetite, sucking reflex, feces consistency, general behavior, dehydration and standing ability were recorded in experimental calves during 24 hours after induction of colisepticemia. Blood culture was also carried out from calves four times during experiment. ANOVA with repeated measure is used to see changes of calves’ clinical signs to experimental colisepticemia, and values of P≤ 0.05 was considered statistically significant. Mean values of rectal temperature and heart rate as well as median values of respiratory rate, appetite, suckling reflex, standing ability and feces consistency of experimental calves increased significantly during study (P<0.05). In the present study median value of shock score was not significantly increased in experimental calves (P> 0.05). The results of present study showed that total score of clinical signs in calves with experimental colisepticemia increased significantly, although score of some clinical signs such as shock did not change significantly.Keywords: Calves, Clinical signs scoring, E. coli O111:H8, Experimental colisepticemia,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211187 Invasion of Pectinatella magnifica in Freshwater Resources of the Czech Republic
Authors: J. Pazourek, K. Šmejkal, P. Kollár, J. Rajchard, J. Šinko, Z. Balounová, E. Vlková, H. Salmonová
Abstract:
Pectinatella magnifica (Leidy, 1851) is an invasive freshwater animal that lives in colonies. A colony of Pectinatella magnifica (a gelatinous blob) can be up to several feet in diameter large and under favorable conditions it exhibits an extreme growth rate. Recently European countries around rivers of Elbe, Oder, Danube, Rhine and Vltava have confirmed invasion of Pectinatella magnifica, including freshwater reservoirs in South Bohemia (Czech Republic). Our project (Czech Science Foundation, GAČR P503/12/0337) is focused onto biology and chemistry of Pectinatella magnifica. We monitor the organism occurrence in selected South Bohemia ponds and sandpits during the last years, collecting information about physical properties of surrounding water, and sampling the colonies for various analyses (classification, maps of secondary metabolites, toxicity tests). Because the gelatinous matrix is during the colony lifetime also a host for algae, bacteria and cyanobacteria (co-habitants), in this contribution, we also applied a high performance liquid chromatography (HPLC) method for determination of potentially present cyanobacterial toxins (microcystin-LR, microcystin-RR, nodularin). Results from the last 3-year monitoring show that these toxins are under limit of detection (LOD), so that they do not represent a danger yet. The final goal of our study is to assess toxicity risks related to fresh water resources invaded by Pectinatella magnifica, and to understand the process of invasion, which can enable to control it.
Keywords: Cyanobacteria, freshwater resources, Pectinatella magnifica invasion, toxicity monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188386 Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
The widespread popularity of mobile devices and the development of artificial intelligence (AI) have led to the widespread adoption of deep learning (DL) in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace, a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Additionally, we propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. Using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We conduct an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace outperformed FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.
Keywords: Mobile computing, deep learning apps, sensitive information, static analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62885 Detecting Financial Bubbles Using Gap between Common Stocks and Preferred Stocks
Authors: Changju Lee, Seungmo Ku, Sondo Kim, Woojin Chang
Abstract:
How to detecting financial bubble? Addressing this simple question has been the focus of a vast amount of empirical research spanning almost half a century. However, financial bubble is hard to observe and varying over the time; there needs to be more research on this area. In this paper, we used abnormal difference between common stocks price and those preferred stocks price to explain financial bubble. First, we proposed the ‘W-index’ which indicates spread between common stocks and those preferred stocks in stock market. Second, to prove that this ‘W-index’ is valid for measuring financial bubble, we showed that there is an inverse relationship between this ‘W-index’ and S&P500 rate of return. Specifically, our hypothesis is that when ‘W-index’ is comparably higher than other periods, financial bubbles are added up in stock market and vice versa; according to our hypothesis, if investors made long term investments when ‘W-index’ is high, they would have negative rate of return; however, if investors made long term investments when ‘W-index’ is low, they would have positive rate of return. By comparing correlation values and adjusted R-squared values of between W-index and S&P500 return, VIX index and S&P500 return, and TED index and S&P500 return, we showed only W-index has significant relationship between S&P500 rate of return. In addition, we figured out how long investors should hold their investment position regard the effect of financial bubble. Using this W-index, investors could measure financial bubble in the market and invest with low risk.
Keywords: Financial bubbles, detection, preferred stocks, pairs trading, future return, forecast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 114084 A New Multi-Target, Multi-Agent Search-and-Rescue Path Planning Approach
Authors: Jean Berger, Nassirou Lo, Martin Noel
Abstract:
Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.
Keywords: Search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249183 Robotics and Embedded Systems Applied to the Buried Pipeline Inspection
Authors: Robson C. Santos, Julio C. P. Ribeiro, Iorran M. de Castro, Luan C. F. Rodrigues, Sandro R. L. Silva, Diego M. Quesada
Abstract:
The work aims to develop a robot in the form of autonomous vehicle to detect, inspection and mapping of underground pipelines through the ATmega328 Arduino platform. Hardware prototyping is very similar to C / C ++ language that facilitates its use in robotics open source, resembles PLC used in large industrial processes. The robot will traverse the surface independently of direct human action, in order to automate the process of detecting buried pipes, guided by electromagnetic induction. The induction comes from coils that send the signal to the Arduino microcontroller contained in that will make the difference in intensity and the treatment of the information, and then this determines actions to electrical components such as relays and motors, allowing the prototype to move on the surface and getting the necessary information. This change of direction is performed by a stepper motor with a servo motor. The robot was developed by electrical and electronic assemblies that allowed test your application. The assembly is made up of metal detector coils, circuit boards and microprocessor, which interconnected circuits previously developed can determine, process control and mechanical actions for a robot (autonomous car) that will make the detection and mapping of buried pipelines plates. This type of prototype can prevent and identifies possible landslides and they can prevent the buried pipelines suffer an external pressure on the walls with the possibility of oil leakage and thus pollute the environment.Keywords: Robotic, metal detector, embedded system, pipeline.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217082 Verification of On-Line Vehicle Collision Avoidance Warning System using DSRC
Authors: C. W. Hsu, C. N. Liang, L. Y. Ke, F. Y. Huang
Abstract:
Many accidents were happened because of fast driving, habitual working overtime or tired spirit. This paper presents a solution of remote warning for vehicles collision avoidance using vehicular communication. The development system integrates dedicated short range communication (DSRC) and global position system (GPS) with embedded system into a powerful remote warning system. To transmit the vehicular information and broadcast vehicle position; DSRC communication technology is adopt as the bridge. The proposed system is divided into two parts of the positioning andvehicular units in a vehicle. The positioning unit is used to provide the position and heading information from GPS module, and furthermore the vehicular unit is used to receive the break, throttle, and othersignals via controller area network (CAN) interface connected to each mechanism. The mobile hardware are built with an embedded system using X86 processor in Linux system. A vehicle is communicated with other vehicles via DSRC in non-addressed protocol with wireless access in vehicular environments (WAVE) short message protocol. From the position data and vehicular information, this paper provided a conflict detection algorithm to do time separation and remote warning with error bubble consideration. And the warning information is on-line displayed in the screen. This system is able to enhance driver assistance service and realize critical safety by using vehicular information from the neighbor vehicles.KeywordsDedicated short range communication, GPS, Control area network, Collision avoidance warning system.
Keywords: Dedicated short range communication, GPS, Control area network, Collision avoidance warning system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221881 An Improved Total Variation Regularization Method for Denoising Magnetocardiography
Authors: Yanping Liao, Congcong He, Ruigang Zhao
Abstract:
The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.Keywords: Constraint parameters, derivative matrix, magnetocardiography, regular term, total variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72180 Detecting Fake News: A Natural Language Processing, Reinforcement Learning, and Blockchain Approach
Authors: Ashly Joseph, Jithu Paulose
Abstract:
In an era where misleading information may quickly circulate on digital news channels, it is crucial to have efficient and trustworthy methods to detect and reduce the impact of misinformation. This research proposes an innovative framework that combines Natural Language Processing (NLP), Reinforcement Learning (RL), and Blockchain technologies to precisely detect and minimize the spread of false information in news articles on social media. The framework starts by gathering a variety of news items from different social media sites and performing preprocessing on the data to ensure its quality and uniformity. NLP methods are utilized to extract complete linguistic and semantic characteristics, effectively capturing the subtleties and contextual aspects of the language used. These features are utilized as input for a RL model. This model acquires the most effective tactics for detecting and mitigating the impact of false material by modeling the intricate dynamics of user engagements and incentives on social media platforms. The integration of blockchain technology establishes a decentralized and transparent method for storing and verifying the accuracy of information. The Blockchain component guarantees the unchangeability and safety of verified news records, while encouraging user engagement for detecting and fighting false information through an incentive system based on tokens. The suggested framework seeks to provide a thorough and resilient solution to the problems presented by misinformation in social media articles.
Keywords: Natural Language Processing, Reinforcement Learning, Blockchain, fake news mitigation, misinformation detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11379 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings
Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo
Abstract:
The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.
Keywords: Building structure, seismic waves, spectral analysis, structural response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531078 Speciation, Preconcentration, and Determination of Iron(II) and (III) Using 1,10-Phenanthroline Immobilized on Alumina-Coated Magnetite Nanoparticles as a Solid Phase Extraction Sorbent in Pharmaceutical Products
Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad
Abstract:
The proposed method for speciation, preconcentration and determination of Fe(II) and Fe(III) in pharmaceutical products was developed using of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) as solid phase extraction (SPE) sorbent in magnetic mixed hemimicell solid phase extraction (MMHSPE) technique followed by flame atomic absorption spectrometry analysis. The procedure is based on complexation of Fe(II) with 1, 10-phenanthroline (OP) as complexing reagent for Fe(II) that immobilized on the modified Fe3O4/Al2O3 NPs. The extraction and concentration process for pharmaceutical sample was carried out in a single step by mixing the extraction solvent, magnetic adsorbents under ultrasonic action. Then, the adsorbents were isolated from the complicated matrix easily with an external magnetic field. Fe(III) ions determined after facility reduced to Fe(II) by added a proper reduction agent to sample solutions. Compared with traditional methods, the MMHSPE method simplified the operation procedure and reduced the analysis time. Various influencing parameters on the speciation and preconcentration of trace iron, such as pH, sample volume, amount of sorbent, type and concentration of eluent, were studied. Under the optimized operating conditions, the preconcentration factor of the modified nano magnetite for Fe(II) 167 sample was obtained. The detection limits and linear range of this method for iron were 1.0 and 9.0 - 175 ng.mL−1, respectively. Also the relative standard deviation for five replicate determinations of 30.00 ng.mL-1 Fe2+ was 2.3%.
Keywords: Alumina-coated magnetite nanoparticles, magnetic mixed hemimicell solid-phase extraction, Fe(ΙΙ) and Fe(ΙΙΙ), pharmaceutical sample.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121677 Elliptical Features Extraction Using Eigen Values of Covariance Matrices, Hough Transform and Raster Scan Algorithms
Authors: J. Prakash, K. Rajesh
Abstract:
In this paper, we introduce a new method for elliptical object identification. The proposed method adopts a hybrid scheme which consists of Eigen values of covariance matrices, Circular Hough transform and Bresenham-s raster scan algorithms. In this approach we use the fact that the large Eigen values and small Eigen values of covariance matrices are associated with the major and minor axial lengths of the ellipse. The centre location of the ellipse can be identified using circular Hough transform (CHT). Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain a small number of nonzero elements they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of circumference pixels is identified using raster scan algorithm which uses the geometrical symmetry property. This method does not require the evaluation of tangents or curvature of edge contours, which are generally very sensitive to noise working conditions. The proposed method has the advantages of small storage, high speed and accuracy in identifying the feature. The new method has been tested on both synthetic and real images. Several experiments have been conducted on various images with considerable background noise to reveal the efficacy and robustness. Experimental results about the accuracy of the proposed method, comparisons with Hough transform and its variants and other tangential based methods are reported.Keywords: Circular Hough transform, covariance matrix, Eigen values, ellipse detection, raster scan algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 264576 Detection of Transgenes in Cotton (Gossypium hirsutum L.) by Using Biotechnology/Molecular Biological Techniques
Authors: Ahmad Ali Shahid, Muhammad Shakil Shaukat, Kamran Shehzad Bajwa, Abdul Qayyum Rao, Tayyab Husnain
Abstract:
Agriculture is the backbone of economy of Pakistan and cotton is the major agricultural export and supreme source of raw fiber for our textile industry. To combat severe problems of insect and weed, combination of three genes namely Cry1Ac, Cry2A and EPSPS genes was transferred in locally cultivated cotton variety MNH-786 with the use of Agrobacterium mediated genetic transformation. The present study focused on the molecular screening of transgenic cotton plants at T3 generation in order to confirm integration and expression of all three genes (Cry1Ac, Cry2A and EPSP synthase) into the cotton genome. Initially, glyphosate spray assay was used for screening of transgenic cotton plants containing EPSP synthase gene at T3 generation. Transgenic cotton plants which were healthy and showed no damage on leaves were selected after 07 days of spray. For molecular analysis of transgenic cotton plants in the laboratory, the genomic DNA of these transgenic cotton plants were isolated and subjected to amplification of the three genes. Thus, seventeen out of twenty (Cry1Ac gene), ten out of twenty (Cry2A gene) and all twenty (EPSP synthase gene) were produced positive amplification. On the base of PCR amplification, ten transgenic plant samples were subjected to protein expression analysis through ELISA. The results showed that eight out of ten plants were actively expressing the three transgenes. Real-time PCR was also done to quantify the mRNA expression levels of Cry1Ac and EPSP synthase gene. Finally, eight plants were confirmed for the presence and active expression of all three genes at T3 generation.
Keywords: Agriculture, Cotton, Transformation, Cry Genes, ELISA and PCR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 314475 Development and Validation of a UPLC Method for the Determination of Albendazole Residues on Pharmaceutical Manufacturing Equipment Surfaces
Authors: R. S. Chandan, M. Vasudevan, Deecaraman, B. M. Gurupadayya
Abstract:
In Pharmaceutical industries, it is very important to remove drug residues from the equipment and areas used. The cleaning procedure must be validated, so special attention must be devoted to the methods used for analysis of trace amounts of drugs. A rapid, sensitive and specific reverse phase ultra performance liquid chromatographic (UPLC) method was developed for the quantitative determination of Albendazole in cleaning validation swab samples. The method was validated using an ACQUITY HSS C18, 50 x 2.1mm, 1.8μ column with a isocratic mobile phase containing a mixture of 1.36g of Potassium dihydrogenphosphate in 1000mL MilliQ water, 2mL of triethylamine and pH adjusted to 2.3 ± 0.05 with ortho-phosphoric acid, Acetonitrile and Methanol (50:40:10 v/v). The flow rate of the mobile phase was 0.5 mL min-1 with a column temperature of 350C and detection wavelength at 254nm using PDA detector. The injection volume was 2µl. Cotton swabs, moisten with acetonitrile were used to remove any residue of drug from stainless steel, teflon, rubber and silicon plates which mimic the production equipment surface and the mean extraction-recovery was found to be 91.8. The selected chromatographic condition was found to effectively elute Albendazole with retention time of 0.67min. The proposed method was found to be linear over the range of 0.2 to 150µg/mL and correlation coefficient obtained is 0.9992. The proposed method was found to be accurate, precise, reproducible and specific and it can also be used for routine quality control analysis of these drugs in biological samples either alone or in combined pharmaceutical dosage forms.
Keywords: Cleaning validation, Albendazole, residues, swab analysis, UPLC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 311474 Serological IgG Testing to Diagnose Alimentary Induced Diseases and Monitoring Efficacy of an Individual Defined Diet in Dogs
Authors: Anne-Margré C. Vink
Abstract:
Background. Food-related allergies and intolerances are frequently occurring in dogs. Diagnosis and monitoring according ‘Golden Standard’ of elimination efficiency is, however, time consuming, expensive, and requires expert clinical setting. In order to facilitate rapid and robust, quantitative testing of intolerance, and determining the individual offending foods, a serological test is implicated for Alimentary Induced Diseases and manifestations. Method. As we developed Medisynx IgG Human Screening Test ELISA before and the dog’ immune system is most similar to humans, we were able to develop Medisynx IgG Dog Screening Test ELISA as well. In this randomized, double-blind, split-sample, retro perspective study 47 dogs suffering from Canine Atopic Dermatitis (CAD) and several secondary induced reactions were included to participate in serological Medisynx IgG Dog Screening Test ELISA (within < 0,02 % SD). Results were expressed as titers relative to the standard OD readings to diagnose alimentary induced diseases and monitoring efficacy of an individual eliminating diet in dogs. Split sample analysis was performed by independently sending 2 times 3 ml serum under two unique codes. Results. The veterinarian monitored these dogs to check dog’ results at least at 3, 7, 21, 49, 70 days and after period of 6 and 12 months on an individual negative diet and a positive challenge (retrospectively) at 6 months. Data of each dog were recorded in a screening form and reported that a complete recovery of all clinical manifestations was observed at or less than 70 days (between 50 and 70 days) in the majority of dogs (44 out of 47 dogs =93.6%). Conclusion. Challenge results showed a significant result of 100% in specificity as well as 100% positive predicted value. On the other hand, sensitivity was 95,7% and negative predictive value was 95,7%. In conclusion, an individual diet based on IgG ELISA in dogs provides a significant improvement of atopic dermatitis and pruritus including all other non-specific defined allergic skin reactions as erythema, itching, biting and gnawing at toes, as well as to several secondary manifestations like chronic diarrhoea, chronic constipation, otitis media, obesity, laziness or inactive behaviour, pain and muscular stiffness causing a movement disorders, excessive lacrimation, hyper behaviour, nervous behaviour and not possible to stay alone at home, anxiety, biting and aggressive behaviour and disobedience behaviour. Furthermore, we conclude that a relatively more severe systemic candidiasis, as shown by relatively higher titer (class 3 and 4 IgG reactions to Candida albicans), influence the duration of recovery from clinical manifestations in affected dogs. These findings are consistent with our preliminary human clinical studies.
Keywords: Allergy, canine atopic dermatitis (CAD), food allergens, IgG-ELISA, food-incompatibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292773 Autonomous Robots- Visual Perception in Underground Terrains Using Statistical Region Merging
Authors: Omowunmi E. Isafiade, Isaac O. Osunmakinde, Antoine B. Bagula
Abstract:
Robots- visual perception is a field that is gaining increasing attention from researchers. This is partly due to emerging trends in the commercial availability of 3D scanning systems or devices that produce a high information accuracy level for a variety of applications. In the history of mining, the mortality rate of mine workers has been alarming and robots exhibit a great deal of potentials to tackle safety issues in mines. However, an effective vision system is crucial to safe autonomous navigation in underground terrains. This work investigates robots- perception in underground terrains (mines and tunnels) using statistical region merging (SRM) model. SRM reconstructs the main structural components of an imagery by a simple but effective statistical analysis. An investigation is conducted on different regions of the mine, such as the shaft, stope and gallery, using publicly available mine frames, with a stream of locally captured mine images. An investigation is also conducted on a stream of underground tunnel image frames, using the XBOX Kinect 3D sensors. The Kinect sensors produce streams of red, green and blue (RGB) and depth images of 640 x 480 resolution at 30 frames per second. Integrating the depth information to drivability gives a strong cue to the analysis, which detects 3D results augmenting drivable and non-drivable regions in 2D. The results of the 2D and 3D experiment with different terrains, mines and tunnels, together with the qualitative and quantitative evaluation, reveal that a good drivable region can be detected in dynamic underground terrains.Keywords: Drivable Region Detection, Kinect Sensor, Robots' Perception, SRM, Underground Terrains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184472 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection
Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi
Abstract:
It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, hybrid, filter-wrapper, phishing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571 Stereo Motion Tracking
Authors: Yudhajit Datta, Jonathan Bandi, Ankit Sethia, Hamsi Iyer
Abstract:
Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots.
Keywords: Kalman Filter, Stereo Vision, Motion Tracking, Matlab, Object Tracking, Camera Calibration, Computer Vision System Toolbox.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283070 Analysis of Driver Point of Regard Determinations with Eye-Gesture Templates Using Receiver Operating Characteristic
Authors: Siti Nor Hafizah binti Mohd Zaid, Mohamed Abdel-Maguid, Abdel-Hamid Soliman
Abstract:
An Advance Driver Assistance System (ADAS) is a computer system on board a vehicle which is used to reduce the risk of vehicular accidents by monitoring factors relating to the driver, vehicle and environment and taking some action when a risk is identified. Much work has been done on assessing vehicle and environmental state but there is still comparatively little published work that tackles the problem of driver state. Visual attention is one such driver state. In fact, some researchers claim that lack of attention is the main cause of accidents as factors such as fatigue, alcohol or drug use, distraction and speeding all impair the driver-s capacity to pay attention to the vehicle and road conditions [1]. This seems to imply that the main cause of accidents is inappropriate driver behaviour in cases where the driver is not giving full attention while driving. The work presented in this paper proposes an ADAS system which uses an image based template matching algorithm to detect if a driver is failing to observe particular windscreen cells. This is achieved by dividing the windscreen into 24 uniform cells (4 rows of 6 columns) and matching video images of the driver-s left eye with eye-gesture templates drawn from images of the driver looking at the centre of each windscreen cell. The main contribution of this paper is to assess the accuracy of this approach using Receiver Operating Characteristic analysis. The results of our evaluation give a sensitivity value of 84.3% and a specificity value of 85.0% for the eye-gesture template approach indicating that it may be useful for driver point of regard determinations.
Keywords: Advanced Driver Assistance Systems, Eye-Tracking, Hazard Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164069 Space Telemetry Anomaly Detection Based on Statistical PCA Algorithm
Authors: B. Nassar, W. Hussein, M. Mokhtar
Abstract:
The critical concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission, but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the problem above coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions, and the results show that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.Keywords: Space telemetry monitoring, multivariate analysis, PCA algorithm, space operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207168 Linguistic, Pragmatic and Evolutionary Factors in Wason Selection Task
Authors: Olimpia Matarazzo, Fabrizio Ferrara
Abstract:
In two studies we tested the hypothesis that the appropriate linguistic formulation of a deontic rule – i.e. the formulation which clarifies the monadic nature of deontic operators - should produce more correct responses than the conditional formulation in Wason selection task. We tested this assumption by presenting a prescription rule and a prohibition rule in conditional vs. proper deontic formulation. We contrasted this hypothesis with two other hypotheses derived from social contract theory and relevance theory. According to the first theory, a deontic rule expressed in terms of cost-benefit should elicit a cheater detection module, sensible to mental states attributions and thus able to discriminate intentional rule violations from accidental rule violations. We tested this prevision by distinguishing the two types of violations. According to relevance theory, performance in selection task should improve by increasing cognitive effect and decreasing cognitive effort. We tested this prevision by focusing experimental instructions on the rule vs. the action covered by the rule. In study 1, in which 480 undergraduates participated, we tested these predictions through a 2 x 2 x 2 x 2 (type of the rule x rule formulation x type of violation x experimental instructions) between-subjects design. In study 2 – carried out by means of a 2 x 2 (rule formulation x type of violation) between-subjects design - we retested the hypothesis of rule formulation vs. the cheaterdetection hypothesis through a new version of selection task in which intentional vs. accidental rule violations were better discriminated. 240 undergraduates participated in this study. Results corroborate our hypothesis and challenge the contrasting assumptions. However, they show that the conditional formulation of deontic rules produces a lower performance than what is reported in literature.Keywords: Deontic reasoning; Evolutionary, linguistic, logical, pragmatic factors; Wason selection task
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162467 A Study of RSCMAC Enhanced GPS Dynamic Positioning
Authors: Ching-Tsan Chiang, Sheng-Jie Yang, Jing-Kai Huang
Abstract:
The purpose of this research is to develop and apply the RSCMAC to enhance the dynamic accuracy of Global Positioning System (GPS). GPS devices provide services of accurate positioning, speed detection and highly precise time standard for over 98% area on the earth. The overall operation of Global Positioning System includes 24 GPS satellites in space; signal transmission that includes 2 frequency carrier waves (Link 1 and Link 2) and 2 sets random telegraphic codes (C/A code and P code), on-earth monitoring stations or client GPS receivers. Only 4 satellites utilization, the client position and its elevation can be detected rapidly. The more receivable satellites, the more accurate position can be decoded. Currently, the standard positioning accuracy of the simplified GPS receiver is greatly increased, but due to affected by the error of satellite clock, the troposphere delay and the ionosphere delay, current measurement accuracy is in the level of 5~15m. In increasing the dynamic GPS positioning accuracy, most researchers mainly use inertial navigation system (INS) and installation of other sensors or maps for the assistance. This research utilizes the RSCMAC advantages of fast learning, learning convergence assurance, solving capability of time-related dynamic system problems with the static positioning calibration structure to improve and increase the GPS dynamic accuracy. The increasing of GPS dynamic positioning accuracy can be achieved by using RSCMAC system with GPS receivers collecting dynamic error data for the error prediction and follows by using the predicted error to correct the GPS dynamic positioning data. The ultimate purpose of this research is to improve the dynamic positioning error of cheap GPS receivers and the economic benefits will be enhanced while the accuracy is increased.Keywords: Dynamic Error, GPS, Prediction, RSCMAC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169066 Progressive AAM Based Robust Face Alignment
Authors: Daehwan Kim, Jaemin Kim, Seongwon Cho, Yongsuk Jang, Sun-Tae Chung, Boo-Gyoun Kim
Abstract:
AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In case the initial values are a little far distant from the global optimum values, there exists a pretty good possibility that AAM-based face alignment may converge to a local minimum. In this paper, we propose a progressive AAM-based face alignment algorithm which first finds the feature parameter vector fitting the inner facial feature points of the face and later localize the feature points of the whole face using the first information. The proposed progressive AAM-based face alignment algorithm utilizes the fact that the feature points of the inner part of the face are less variant and less affected by the background surrounding the face than those of the outer part (like the chin contour). The proposed algorithm consists of two stages: modeling and relation derivation stage and fitting stage. Modeling and relation derivation stage first needs to construct two AAM models: the inner face AAM model and the whole face AAM model and then derive relation matrix between the inner face AAM parameter vector and the whole face AAM model parameter vector. In the fitting stage, the proposed algorithm aligns face progressively through two phases. In the first phase, the proposed algorithm will find the feature parameter vector fitting the inner facial AAM model into a new input face image, and then in the second phase it localizes the whole facial feature points of the new input face image based on the whole face AAM model using the initial parameter vector estimated from using the inner feature parameter vector obtained in the first phase and the relation matrix obtained in the first stage. Through experiments, it is verified that the proposed progressive AAM-based face alignment algorithm is more robust with respect to pose, illumination, and face background than the conventional basic AAM-based face alignment algorithm.Keywords: Face Alignment, AAM, facial feature detection, model matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164865 Data Privacy and Safety with Large Language Models
Authors: Ashly Joseph, Jithu Paulose
Abstract:
Large language models (LLMs) have revolutionized natural language processing capabilities, enabling applications such as chatbots, dialogue agents, image, and video generators. Nevertheless, their trainings on extensive datasets comprising personal information poses notable privacy and safety hazards. This study examines methods for addressing these challenges, specifically focusing on approaches to enhance the security of LLM outputs, safeguard user privacy, and adhere to data protection rules. We explore several methods including post-processing detection algorithms, content filtering, reinforcement learning from human and AI inputs, and the difficulties in maintaining a balance between model safety and performance. The study also emphasizes the dangers of unintentional data leakage, privacy issues related to user prompts, and the possibility of data breaches. We highlight the significance of corporate data governance rules and optimal methods for engaging with chatbots. In addition, we analyze the development of data protection frameworks, evaluate the adherence of LLMs to General Data Protection Regulation (GDPR), and examine privacy legislation in academic and business policies. We demonstrate the difficulties and remedies involved in preserving data privacy and security in the age of sophisticated artificial intelligence by employing case studies and real-life instances. This article seeks to educate stakeholders on practical strategies for improving the security and privacy of LLMs, while also assuring their responsible and ethical implementation.
Keywords: Data privacy, large language models, artificial intelligence, machine learning, cybersecurity, general data protection regulation, data safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16064 Lamb Wave Wireless Communication in Healthy Plates Using Coherent Demodulation
Authors: Rudy Bahouth, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad
Abstract:
Guided ultrasonic waves are used in Non-Destructive Testing and Structural Health Monitoring for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average bit error percentage. Results has shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.
Keywords: Lamb Wave Communication, wireless communication, coherent demodulation, bit error percentage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57163 Multipath Routing Protocol Using Basic Reconstruction Routing (BRR) Algorithm in Wireless Sensor Network
Authors: K. Rajasekaran, Kannan Balasubramanian
Abstract:
A sensory network consists of multiple detection locations called sensor nodes, each of which is tiny, featherweight and portable. A single path routing protocols in wireless sensor network can lead to holes in the network, since only the nodes present in the single path is used for the data transmission. Apart from the advantages like reduced computation, complexity and resource utilization, there are some drawbacks like throughput, increased traffic load and delay in data delivery. Therefore, multipath routing protocols are preferred for WSN. Distributing the traffic among multiple paths increases the network lifetime. We propose a scheme, for the data to be transmitted through a dominant path to save energy. In order to obtain a high delivery ratio, a basic route reconstruction protocol is utilized to reconstruct the path whenever a failure is detected. A basic reconstruction routing (BRR) algorithm is proposed, in which a node can leap over path failure by using the already existing routing information from its neighbourhood while the composed data is transmitted from the source to the sink. In order to save the energy and attain high data delivery ratio, data is transmitted along a multiple path, which is achieved by BRR algorithm whenever a failure is detected. Further, the analysis of how the proposed protocol overcomes the drawback of the existing protocols is presented. The performance of our protocol is compared to AOMDV and energy efficient node-disjoint multipath routing protocol (EENDMRP). The system is implemented using NS-2.34. The simulation results show that the proposed protocol has high delivery ratio with low energy consumption.Keywords: Multipath routing, WSN, energy efficient routing, alternate route, assured data delivery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172762 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: B. Golchin, N. Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.
Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68161 Optimization and Validation for Determination of VOCs from Lime Fruit Citrus aurantifolia (Christm.) with and without California Red Scale Aonidiella aurantii (Maskell) Infested by Using HS-SPME-GC-FID/MS
Authors: K. Mohammed, M. Agarwal, J. Mewman, Y. Ren
Abstract:
An optimum technic has been developed for extracting volatile organic compounds which contribute to the aroma of lime fruit (Citrus aurantifolia). The volatile organic compounds of healthy and infested lime fruit with California red scale Aonidiella aurantii were characterized using headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) as a very simple, efficient and nondestructive extraction method. A three-phase 50/30 μm PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing and fibre exposure time for volatiles reaching equilibrium from whole lime fruit in the headspace of the chamber was 16 and 4 hours respectively. 5 min was selected as desorption time of the three-phase fibre. Herbivorous activity induces indirect plant defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by natural enemies for host location. GC-MS analysis showed qualitative differences among volatiles emitted by infested and healthy lime fruit. The GC-MS analysis allowed the initial identification of 18 compounds, with similarities higher than 85%, in accordance with the NIST mass spectral library. One of these were increased by A. aurantii infestation, D-limonene, and three were decreased, Undecane, α-Farnesene and 7-epi-α-selinene. From an applied point of view, the application of the above-mentioned VOCs may help boost the efficiency of biocontrol programs and natural enemies’ production techniques.
Keywords: Lime fruit, Citrus aurantifolia, California red scale, Aonidiella aurantii, VOCs, HS-SPME/GC-FID-MS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87160 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data
Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L Duan
Abstract:
The conditional density characterizes the distribution of a response variable y given other predictor x, and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts a motivating starting point. In this work, we extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zP , zN]. The zP component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zN component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach, coined Augmented Posterior CDE (AP-CDE), only requires a simple modification on the common normalizing flow framework, while significantly improving the interpretation of the latent component, since zP represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of x-related variations due to factors such as lighting condition and subject id, from the other random variations. Further, the experiments show that an unconditional NF neural network, based on an unsupervised model of z, such as Gaussian mixture, fails to generate interpretable results.
Keywords: Conditional density estimation, image generation, normalizing flow, supervised dimension reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188