Search results for: sound pressure level
4635 Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow
Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim
Abstract:
Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.Keywords: Constriction, pressure drop, turbulence, water cut, water-in-oil emulsions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11064634 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software
Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven
Abstract:
Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.
Keywords: Aeroacoustics, Ffowcs-Williams and Hawkings equations, SST k-ω turbulence model, Noise Disturbance, 3D Blade Profile, 2D Blade Profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8604633 Influence of Static Pressure on Viability of Entomopathogenic Nematodes – Steinernema feltiae
Authors: J. Chojnacki, E. Dulcet, A. Grieger
Abstract:
The entomopathogenic nematodes Steinernema feltiaeare are components of many biological pesticides. The biological pesticides are applicated by means a spraying machines. The influence of high pressure operating time on viability of nematodes has been experimentally investigated in order to explain if static pressure inside of the sprayers installation was able to destroy nematodes. The value of pressure was 55 MPa and its maximum operating time was 3 hours. Changes were found in viability of pressurized samples of nematodes, mixed with water.Keywords: Entomopathogenic nematodes, biopesticides, highpressure, sprayer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14844632 Automatic Translation of Ada-ECATNet Using Rewriting Logic
Authors: N. Boudiaf
Abstract:
One major difficulty that faces developers of concurrent and distributed software is analysis for concurrency based faults like deadlocks. Petri nets are used extensively in the verification of correctness of concurrent programs. ECATNets are a category of algebraic Petri nets based on a sound combination of algebraic abstract types and high-level Petri nets. ECATNets have 'sound' and 'complete' semantics because of their integration in rewriting logic and its programming language Maude. Rewriting logic is considered as one of very powerful logics in terms of description, verification and programming of concurrent systems We proposed previously a method for translating Ada-95 tasking programs to ECATNets formalism (Ada-ECATNet) and we showed that ECATNets formalism provides a more compact translation for Ada programs compared to the other approaches based on simple Petri nets or Colored Petri nets. We showed also previously how the ECATNet formalism offers to Ada many validation and verification tools like simulation, Model Checking, accessibility analysis and static analysis. In this paper, we describe the implementation of our translation of the Ada programs into ECATNets.Keywords: Ada tasking, Analysis, Automatic Translation, ECATNets, Maude, Rewriting Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15844631 Study of Effect of Gear Tooth Accuracy on Transmission Mount Vibration
Authors: Kalyan Deepak Kolla, Ketan Paua, Rajkumar Bhagate
Abstract:
Transmission dynamics occupy major role in customer perception of the product in both senses of touch and quality of sound. The quantity and quality of sound perceived is more concerned with the whine noise of the gears engaged. Whine noise is tonal in nature and tonal noises cause fatigue and irritation to customers, which in turn affect the quality of the product. Transmission error is the usual suspect for whine noise, which can be caused due to misalignments, tolerances, manufacturing variabilities. In-cabin noise is also more sensitive to the gear design. As the details of the gear tooth design and manufacturing are in microns, anything out of the tolerance zone, either in design or manufacturing, will cause a whine noise. This will also cause high variation in stress and deformation due to change in the load and leads to the fatigue failure of the gears. Hence gear design and development take priority in the transmission development process. This paper aims to study such variability by considering five pairs of helical spur gears and their effect on the transmission error, contact pattern and vibration level on the transmission.Keywords: Gears, whine noise, manufacturing variability, mount vibration variability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6444630 Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall
Authors: Snehal R. Pathak, Sachin S. Munnoli
Abstract:
Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.Keywords: Earth pressure, earthquake, 2-DOF model, plaxis, wall movement, retaining walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15174629 Sea Level Characteristics Referenced to Specific Geodetic Datum in Alexandria, Egypt
Authors: Ahmed M. Khedr, Saad M. Abdelrahman, Kareem M. Tonbol
Abstract:
Two geo-referenced sea level datasets (September 2008 – November 2010) and (April 2012 – January 2014) were recorded at Alexandria Western Harbour (AWH). Accurate re-definition of tidal datum, referred to the latest International Terrestrial Reference Frame (ITRF-2014), was discussed and updated to improve our understanding of the old predefined tidal datum at Alexandria. Tidal and non-tidal components of sea level were separated with the use of Delft-3D hydrodynamic model-tide suit (Delft-3D, 2015). Tidal characteristics at AWH were investigated and harmonic analysis showed the most significant 34 constituents with their amplitudes and phases. Tide was identified as semi-diurnal pattern as indicated by a “Form Factor” of 0.24 and 0.25, respectively. Principle tidal datums related to major tidal phenomena were recalculated referred to a meaningful geodetic height datum. The portion of residual energy (surge) out of the total sea level energy was computed for each dataset and found 77% and 72%, respectively. Power spectral density (PSD) showed accurate resolvability in high band (1–6) cycle/days for the nominated independent constituents, except some neighbouring constituents, which are too close in frequency. Wind and atmospheric pressure data, during the recorded sea level time, were analysed and cross-correlated with the surge signals. Moderate association between surge and wind and atmospheric pressure data were obtained. In addition, long-term sea level rise trend at AWH was computed and showed good agreement with earlier estimated rates.
Keywords: Alexandria, Delft-3D, Egypt, geodetic reference, harmonic analysis, sea level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13604628 Arduino Pressure Sensor Cushion for Tracking and Improving Sitting Posture
Authors: Andrew Hwang
Abstract:
The average American worker sits for thirteen hours a day, often with poor posture and infrequent breaks, which can lead to health issues and back problems. The Smart Cushion was created to alert individuals of their poor postures, and may potentially alleviate back problems and correct poor posture. The Smart Cushion is a portable, rectangular, foam cushion, with five strategically placed pressure sensors, that utilizes an Arduino Uno circuit board and specifically designed software, allowing it to collect data from the five pressure sensors and store the data on an SD card. The data is then compiled into graphs and compared to controlled postures. Before volunteers sat on the cushion, their levels of back pain were recorded on a scale from 1-10. Data was recorded for an hour during sitting, and then a new, corrected posture was suggested. After using the suggested posture for an hour, the volunteers described their level of discomfort on a scale from 1-10. Different patterns of sitting postures were generated that were able to serve as early warnings of potential back problems. By using the Smart Cushion, the areas where different volunteers were applying the most pressure while sitting could be identified, and the sitting postures could be corrected. Further studies regarding the relationships between posture and specific regions of the body are necessary to better understand the origins of back pain; however, the Smart Cushion is sufficient for correcting sitting posture and preventing the development of additional back pain.
Keywords: Arduino Sketch Algorithm, biomedical technology, pressure sensors, Smart Cushion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12974627 Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack
Authors: Na Li, Samuel Simon Araya, Søren Knudsen Kær
Abstract:
This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance.
Keywords: PEM electrolysis stack, current density, temperature, pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10624626 Phase Diagram Including a Negative Pressure Region for a Thermotropic Liquid Crystal in a Metal Berthelot Tube
Abstract:
Thermodynamic properties of liquids under negative pressures are interesting and important in fields of scienceand technology. Here, phase transitions of a thermotropic liquid crystal are investigatedin a range from positive to negative pressures with a metal Berthelot tube using a commercial pressure transducer.Two co-existinglines, namely crystal (Kr) –nematic (N), and isotropic liquid (I) - nematic (N) lines, weredrawn in a pressure - temperature plane. The I-N line was drawn to ca. -5 (MPa).
Keywords: Berthelot method, liquid crystal, negative pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16974625 The Role of Velocity Map Quality in Estimation of Intravascular Pressure Distribution
Authors: Ali Pashaee, Parisa Shooshtari, Gholamreza Atae, Nasser Fatouraee
Abstract:
Phase-Contrast MR imaging methods are widely used for measurement of blood flow velocity components. Also there are some other tools such as CT and Ultrasound for velocity map detection in intravascular studies. These data are used in deriving flow characteristics. Some clinical applications are investigated which use pressure distribution in diagnosis of intravascular disorders such as vascular stenosis. In this paper an approach to the problem of measurement of intravascular pressure field by using velocity field obtained from flow images is proposed. The method presented in this paper uses an algorithm to calculate nonlinear equations of Navier- Stokes, assuming blood as an incompressible and Newtonian fluid. Flow images usually suffer the lack of spatial resolution. Our attempt is to consider the effect of spatial resolution on the pressure distribution estimated from this method. In order to achieve this aim, velocity map of a numerical phantom is derived at six different spatial resolutions. To determine the effects of vascular stenoses on pressure distribution, a stenotic phantom geometry is considered. A comparison between the pressure distribution obtained from the phantom and the pressure resulted from the algorithm is presented. In this regard we also compared the effects of collocated and staggered computational grids on the pressure distribution resulted from this algorithm.Keywords: Flow imaging, pressure distribution estimation, phantom, resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16824624 Evaluation of the Acoustic Performance of Classrooms in Algerian Teaching Schools
Authors: Bouttout Abdelouahab, Amara Mohamed, Djakabe Saad, Remram Youcef
Abstract:
This paper presents the results of an evaluation of acoustic comfort such as background noise and reverberation time in teaching rooms in Height National School of Civil Engineering, Algeria. Four teaching rooms are evaluated: conference room, two classroom and amphitheatre. The acoustic quality of the classrooms has been analyzed based on measurements of sound pressure level inside room and reverberations time. The measurement results show that impulse decays dependent on the position of the microphone inside room and the background noise is with agreement of National Official Journal of Algeria published in July 1993. Therefore there exists a discrepancy between the obtained reverberation time value and recommended reverberation time in some classrooms. Three methods have been proposed to reduce the reverberation time values in such room. We developed a program with FORTRAN 6.0 language based on the absorption acoustic values of the Technical Document Regulation (DTR C3.1.1). The important results of this paper can be used to regulate the construction and execute the acoustic rehabilitations of teaching room in Algeria, especially the classrooms of the pupils in primary and secondary schools.
Keywords: Room acoustic, reverberation time, background noise, absorptions materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26964623 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle
Authors: R. Haoui
Abstract:
The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.
Keywords: Launchers, supersonic flow, finite volume, nozzles, shock wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8774622 Long-Term Simulation of Digestive Sound Signals by CEPSTRAL Technique
Authors: Einalou Z., Najafi Z., Maghooli K. Zandi Y, Sheibeigi A
Abstract:
In this study, an investigation over digestive diseases has been done in which the sound acts as a detector medium. Pursue to the preprocessing the extracted signal in cepstrum domain is registered. After classification of digestive diseases, the system selects random samples based on their features and generates the interest nonstationary, long-term signals via inverse transform in cepstral domain which is presented in digital and sonic form as the output. This structure is updatable or on the other word, by receiving a new signal the corresponding disease classification is updated in the feature domain.
Keywords: Cepstrum, databank, digestive disease, acousticsignal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15564621 Resonant-Based Capacitive Pressure Sensor Read-Out Oscillating at 1.67 GHz in 0.18
Authors: Yong Wang, Wang Ling Goh, Jung Hyup Lee, Kevin T. C. Chai, Minkyu Je
Abstract:
This paper presents a resonant-based read-out circuit for capacitive pressure sensors. The proposed read-out circuit consists of an LC oscillator and a counter. The circuit detects the capacitance changes of a capacitive pressure sensor by means of frequency shifts from its nominal operation frequency. The proposed circuit is designed in 0.18m CMOS with an estimated power consumption of 43.1mW. Simulation results show that the circuit has a capacitive resolution of 8.06kHz/fF, which enables it for high resolution pressure detection.
Keywords: Capacitance-to-frequency converter, Capacitive pressure sensor, Digital counter, LC oscillator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29844620 Effects of Injection Conditions on Flame Structures in Gas-Centered Swirl Coaxial Injector
Authors: Wooseok Song, Sunjung Park, Jongkwon Lee, Jaye Koo
Abstract:
The objective of this paper is to observe the effects of injection conditions on flame structures in gas-centered swirl coaxial injector. Gaseous oxygen and liquid kerosene were used as propellants. For different injection conditions, two types of injector, which only differ in the diameter of the tangential inlet, were used in this study. In addition, oxidizer injection pressure was varied to control the combustion chamber pressure in different types of injector. In order to analyze the combustion instability intensity, the dynamic pressure was measured in both the combustion chamber and propellants lines. With the increase in differential pressure between the propellant injection pressure and the combustion chamber pressure, the combustion instability intensity increased. In addition, the flame structure was recorded using a high-speed camera to detect CH* chemiluminescence intensity. With the change in the injection conditions in the gas-centered swirl coaxial injector, the flame structure changed.
Keywords: Liquid rocket engine, flame structure, combustion instability, dynamic pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8894619 Gas Lift Optimization to Improve Well Performance
Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, Meisam Babaie
Abstract:
Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost.
Keywords: Optimization, production rate, reservoir pressure effect, gas injection rate effect, gas injection pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68004618 Optimization of Fin Type and Fin per Inch on Heat Transfer and Pressure Drop of an Air Cooler
Authors: A. Falavand Jozaei, A. Ghafouri
Abstract:
Operation enhancement in an air cooler depends on rate of heat transfer, and pressure drop. In this paper for a given heat duty, study of the effects of FPI (Fin Per Inch) and fin type (circular and hexagonal fins) on heat transfer, and pressure drop in an air cooler in Iran, Arvand petrochemical. A program in EES (Engineering Equations Solver) software moreover, Aspen B-JAC and HTFS+ softwares are used for this purpose to solve governing equations. At first the simulated results obtained from this program is compared to the experimental data for two cases of FPI. The effects of FPI from 3 to 15 over heat transfer (Q) to pressure drop ratio (Q/Δp ratio). This ratio is one of the main parameters in design, and simulation heat exchangers. The results show that heat transfer (Q) and pressure drop increase with increasing FPI steadily, and the Q/Δp ratio increases to FPI=12 and then decreased gradually to FPI=15, and Q/Δp ratio is maximum at FPI=12. The FPI value selection between 8 and 12 obtained as a result to optimum heat transfer to pressure drop ratio. Also by contrast, between circular and hexagonal fins results, the Q/Δp ratio of hexagonal fins more than Q/Δp ratio of circular fins for FPI between 8 and 12 (optimum FPI)Keywords: Air cooler, circular and hexagonal fins, fin per inch, heat transfer and pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46904617 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12824616 Effect of Non-Newtonian Behavior of Oil Phase on Oil-Water Stratified Flow in a Horizontal Channel
Authors: Satish Kumar Dewangan, Santosh Kumar Senapati
Abstract:
The present work focuses on the investigation of the effect of non-Newtonian behavior on the oil-water stratified flow in a horizontal channel using ANSYS Fluent. Coupled level set and volume of fluid (CLSVOF) has been used to capture the evolving interface assuming unsteady, coaxial flow with constant fluid properties. The diametric variation of oil volume fraction, mixture velocity, total pressure and pressure gradient has been studied. Non-Newtonian behavior of oil has been represented by the power law model in order to investigate the effect of flow behavior index. Stratified flow pattern tends to assume dispersed flow pattern with the change in the behavior of oil to non-Newtonian. The pressure gradient is found to be very much sensitive to the flow behavior index. The findings could be useful in designing the transportation pipe line in petroleum industries.
Keywords: Oil-water stratified flow, horizontal channel, CLSVOF, non–Newtonian behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11514615 ROSA/LSTF Test on Pressurized Water Reactor Steam Generator Tube Rupture Accident Induced by Main Steam Line Break with Recovery Actions
Authors: Takeshi Takeda
Abstract:
An experiment was performed for the OECD/NEA ROSA-2 Project employing the ROSA/LSTF (rig of safety assessment/large-scale test facility), which simulated a steam generator tube rupture (SGTR) accident induced by main steam line break (MSLB) with operator recovery actions in a pressurized water reactor (PWR). The primary pressure decreased to the pressure level nearly-equal to the intact steam generator (SG) secondary-side pressure even with coolant injection from the high-pressure injection (HPI) system of emergency core cooling system (ECCS) into cold legs. Multi-dimensional coolant behavior appeared such as thermal stratification in both hot and cold legs in intact loop. The RELAP5/MOD3.3 code indicated the insufficient predictions of the primary pressure, the SGTR break flow rate, and the HPI flow rate, and failed to predict the fluid temperatures in the intact loop hot and cold legs. Results obtained from the comparison among three LSTF SGTR-related tests clarified that the thermal stratification occurs in the horizontal legs by different mechanisms.
Keywords: LSTF, SGTR, thermal stratification, RELAP5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7874614 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic
Authors: C.W. Kan
Abstract:
This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.
Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17854613 A Study of the Growth of Single-Phase Mg0.5Zn0.5O Films for UV LED
Authors: Hong Seung Kim, Chang Hoi Kim, Lili Yue
Abstract:
Single-phase, high band gap energy Zn0.5Mg0.5O films were grown under oxygen pressure, using pulse laser deposition with a Zn0.5Mg0.5O target. Structural characterization studies revealed that the crystal structures of the ZnX-1MgXO films could be controlled via changes in the oxygen pressure. TEM analysis showed that the thickness of the deposited Zn1-xMgxO thin films was 50–75 nm. As the oxygen pressure increased, we found that one axis of the crystals did not show a very significant increase in the crystallization compared with that observed at low oxygen pressure. The X-ray diffraction peak intensity for the hexagonal-ZnMgO (002) plane increased relative to that for the cubic-ZnMgO (111) plane. The corresponding c-axis of the h-ZnMgO lattice constant increased from 5.141 to 5.148 Å, and the a-axis of the c-ZnMgO lattice constant decreased from 4.255 to 4.250 Å. EDX analysis showed that the Mg content in the mixed-phase ZnMgO films decreased significantly, from 54.25 to 46.96 at.%. As the oxygen pressure was increased from 100 to 150 mTorr, the absorption edge red-shifted from 3.96 to 3.81 eV; however, a film grown at the highest oxygen pressure tested here (200 mTorr).
Keywords: MgO, UV LED, ZnMgO, ZnO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21224612 An Aerodynamic Design and Analysis of Motor Cycle Helmet with Anti-Glare Visor
Authors: V. C. Sathish Gandhi, R. Kumaravelan, S. Ramesh, M. Venkatesan, M. Siva Rama Krishnan
Abstract:
Motor cycle accidents have been increased for the past two decades. Helmet can protect the vehicle riders from severe injuries during road accident to certain extent. To design a functional helmet, it is important to analyze the shape of the helmet and visor portion. Hence, an attempt has been made for design and analysis of new helmet by considering the drag pressure and anti-glare visor. The drag pressure resistance presses the helmet against the neck portion of the rider. The shape of an aerodynamic helmet can be able to reduce the drag pressure. The spherical shape and a new aerodynamic shape helmets are designed with help of Pro-E software and the drag pressures were calculated and comparison has been made on the basis of drag pressure.
Keywords: Helmet, drag pressure, aero-dynamic, refractive index, Pro-E.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49664611 Application of Flexi-Wall in Noise Barriers Renewal
Authors: B. Daee, H. M. El Naggar
Abstract:
This paper presents an experimental study on structural performance of an innovative noise barrier consisting of poly-block, light polyurethane foam (LPF) and polyurea. This wall system (flexi-wall) is intended to be employed as a vertical extension to existing sound barriers in an accelerated construction method. To aid in the wall design, several mechanical tests were conducted on LPF specimens and two full-scale walls were then fabricated employing the same LPF material. The full-scale walls were subjected to lateral loading in order to establish their lateral resistance. A cyclic fatigue test was also performed on a full-scale flexi-wall in order to evaluate the performance of the wall under a repetitive loading condition. The result of the experiments indicated the suitability of flexi-wall in accelerated construction and confirmed that the structural performance of the wall system under lateral loading is satisfactory for the sound barrier application. The experimental results were discussed and a preliminary design procedure for application of flexi-wall in sound barrier applications was also developed.Keywords: Noise barrier, Polyurethane Foam, Accelerated construction, Full-scale experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19404610 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9 DOF Platform
Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu
Abstract:
Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.Keywords: Capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23284609 Acoustic Absorption of Hemp Walls with Ground Granulated Blast Slag
Authors: Oliver Kinnane, Aidan Reilly, John Grimes, Sara Pavia, Rosanne Walker
Abstract:
Unwanted sound reflection can create acoustic discomfort and lead to problems of speech comprehensibility. Contemporary building techniques enable highly finished internal walls resulting in sound reflective surfaces. In contrast, sustainable construction materials using natural and vegetal materials, are often more porous and absorptive. Hemp shiv is used as an aggregate and when mixed with lime binder creates a low-embodied-energy concrete. Cement replacements such as ground granulated blast slag (GGBS), a byproduct of other industrial processes, are viewed as more sustainable alternatives to high-embodied-energy cement. Hemp concretes exhibit good hygrothermal performance. This has focused much research attention on them as natural and sustainable low-energy alternatives to standard concretes. A less explored benefit is the acoustic absorption capability of hemp-based concretes. This work investigates hemp-lime-GGBS concrete specifically, and shows that it exhibits high levels of sound absorption.Keywords: Hemp, hempcrete, acoustic absorption, GGBS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17704608 The Effect of Multi-Layer Bandage on the Interface Pressure Applied by Compression Bandages
Authors: Jawad Al Khaburi, Abbas A. Dehghani-Sanij, E. Andrea Nelson, Jerry Hutchinson
Abstract:
Medical compression bandages are widely used in the treatment of chronic venous disorder. In order to design effective compression bandages, researchers have attempted to describe the interface pressure applied by multi-layer bandages using mathematical models. This paper reports on the work carried out to compare and validate the mathematical models used to describe the interface pressure applied by multi-layer bandages. Both analytical and experimental results showed that using simple multiplication of a number of bandage layers with the pressure applied by one layer of bandage or ignoring the increase in the limb radius due to former layers of bandage will result in overestimating the pressure. Experimental results showed that the mathematical models, which take into consideration the increase in the limb radius due to former bandage layers, are more accurate than the one which does not.Keywords: Compression bandages, FlexiForce, interface pressure, venous ulcer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27194607 Density Wave Instability of Supercritical Kerosene in Active Cooling Channels of Scramjets
Authors: N. Wang, Y. Pan, J. Zhou, J. Lei, X. Z. Yang
Abstract:
Experimental investigations were made on the instability of supercritical kerosene flowing in active cooling channels. Two approaches were used to control the pressure in the channel. One is the back-pressure valve while the other is the venturi. In both conditions, a kind of low-frequency oscillation of pressure and temperature is observed. And the oscillation periods are calculated. By comparison with the flow time, it is concluded that the instability occurred in active cooling channels is probably one kind of density wave instability. And its period has no relationship with the cooling channel geometry, nor the pressure, but only depends on the flow time of kerosene in active cooling channels. When the mass flow rate, density and pressure drop couple with each other, the density wave instability will appear.
Keywords: scramjets, active cooling, instability, density wave
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15414606 Effects of Knitting Variables for Pressure Controlling of Tubular Compression Fabrics
Authors: Yu Shi, Rong Liu, Jingyun Lv
Abstract:
Compression textiles with ergonomic-fit and controllable pressure performance have demonstrated positive effect on prevention and treatment of chronic venous insufficiency (CVI). Well-designed compression textile products contribute to improving user compliance in their daily application. This study explored the effects of multiple knitting variables (yarn-machinery settings) on the physical-mechanical properties and the produced pressure magnitudes of tubular compression fabrics (TCFs) through experimental testing and multiple regression modeling. The results indicated that fabric physical (stitch densities and circumference) and mechanical (tensile) properties were affected by the linear density of inlay yarns, which, to some extent, influenced pressure magnitudes of the TCFs. Knitting variables (e.g., feeding velocity of inlay yarns and loop size settings) can alter circumferences and tensile properties of tubular fabrics, respectively, and significantly varied pressure values of the TCFs. This study enhanced the understanding of the effects of knitting factors on pressure controlling of TCFs, thus facilitating dimension and pressure design of compression textiles in future development.
Keywords: Laid-in knitted fabric, yarn-machinery settings, pressure magnitudes, quantitative analysis, compression textiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 280