Search results for: Stone Column.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 335

Search results for: Stone Column.

215 Low Complexity Regular LDPC codes for Magnetic Storage Devices

Authors: Gabofetswe Malema, Michael Liebelt

Abstract:

LDPC codes could be used in magnetic storage devices because of their better decoding performance compared to other error correction codes. However, their hardware implementation results in large and complex decoders. This one of the main obstacles the decoders to be incorporated in magnetic storage devices. We construct small high girth and rate 2 columnweight codes from cage graphs. Though these codes have low performance compared to higher column weight codes, they are easier to implement. The ease of implementation makes them more suitable for applications such as magnetic recording. Cages are the smallest known regular distance graphs, which give us the smallest known column-weight 2 codes given the size, girth and rate of the code.

Keywords: Structured LDPC codes, cage graphs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
214 Controlling Water Temperature during the Electrocoagulation Process Using an Innovative Flow Column-Electrocoagulation Reactor

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, Montserrat Ortoneda Pedrola

Abstract:

A flow column has been innovatively used in the design of a new electrocoagulation reactor (ECR1) that will reduce the temperature of water being treated; where the flow columns work as a radiator for the water being treated. In order to investigate the performance of ECR1 and compare it to that of traditional reactors; 600 mL water samples with an initial temperature of 350C were pumped continuously through these reactors for 30 min at current density of 1 mA/cm2. The temperature of water being treated was measured at 5 minutes intervals over a 30 minutes period using a thermometer. Additional experiments were commenced to investigate the effects of initial temperature (15-350C), water conductivity (0.15 – 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of ECR1. The results obtained demonstrated that the ECR1, at a current density of 1 mA/cm2 and continuous flow model, reduced water temperature from 350C to the vicinity of 280C during the first 15 minutes and kept the same level till the end of the treatment time. While, the temperature increased from 28.1 to 29.80C and from 29.8 to 31.90C in the batch and the traditional continuous flow models respectively. In term of initial temperature, ECR1 maintained the temperature of water being treated within the range of 22 to 280C without the need for external cooling system even when the initial temperatures varied over a wide range (15 to 350C). The influent water conductivity was found to be a significant variable that affect the temperature. The desirable value of water conductivity is 0.6 S. However, it was found that the water temperature increased rapidly with a higher current density.

Keywords: Water temperature, flow column, electrocoagulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2351
213 A Comparative Study of Fine Grained Security Techniques Based on Data Accessibility and Inference

Authors: Azhar Rauf, Sareer Badshah, Shah Khusro

Abstract:

This paper analyzes different techniques of the fine grained security of relational databases for the two variables-data accessibility and inference. Data accessibility measures the amount of data available to the users after applying a security technique on a table. Inference is the proportion of information leakage after suppressing a cell containing secret data. A row containing a secret cell which is suppressed can become a security threat if an intruder generates useful information from the related visible information of the same row. This paper measures data accessibility and inference associated with row, cell, and column level security techniques. Cell level security offers greatest data accessibility as it suppresses secret data only. But on the other hand, there is a high probability of inference in cell level security. Row and column level security techniques have least data accessibility and inference. This paper introduces cell plus innocent security technique that utilizes the cell level security method but suppresses some innocent data to dodge an intruder that a suppressed cell may not necessarily contain secret data. Four variations of the technique namely cell plus innocent 1/4, cell plus innocent 2/4, cell plus innocent 3/4, and cell plus innocent 4/4 respectively have been introduced to suppress innocent data equal to 1/4, 2/4, 3/4, and 4/4 percent of the true secret data inside the database. Results show that the new technique offers better control over data accessibility and inference as compared to the state-of-theart security techniques. This paper further discusses the combination of techniques together to be used. The paper shows that cell plus innocent 1/4, 2/4, and 3/4 techniques can be used as a replacement for the cell level security.

Keywords: Fine Grained Security, Data Accessibility, Inference, Row, Cell, Column Level Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
212 Comparative Study on Status and Development of Transient Flow Analysis Including Simple Surge Tank

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar

Abstract:

This paper presents the problem of modeling and simulating of transient phenomena in conveying pipeline systems based on the rigid column and full elastic methods. Transient analysis is important and one of the more challenging and complicated flow problem in the design and the operation of water pipeline systems. Transient can produce large pressure forces and rapid fluid acceleration into a water pipeline system, these disturbances may result in device failures, system fatigue or pipe ruptures, and even the dirty water intrusion. Several methods have been introduced and used to analyze transient flow, an accurate analysis and suitable protection devices should be used to protect water pipeline systems. The fourth-order Runge-Kutta method has been used to solve the dynamic and continuity equations in the rigid column method, while the characteristics method used to solve these equations in the full elastic method. The results obtained provide that the model is an efficient tool for flow transient analysis and provide approximately identical results by using these two methods. Moreover; using the simple surge tank ”open surge tank” reduces the unfavorable effects of transients.

Keywords: Elastic method, Flow transient, Open surge tank, Pipeline, Protection devices, Numerical model, Rigid column method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2993
211 Effect of Cladding and Secondary Members on the Elastic Stability of Main Columns

Authors: Mohamed Massoud El Sadaawy, Ehab Hasan Ahmed Hasan Ali

Abstract:

The corrugated steel cladding used to cover most of steel buildings is considered as non-structural element. This research will reflect the effect of cladding as a shear diaphragm in increasing the normal elastic capacity of columns. This study is important because of the lack of information of the behavior of cladding and secondary members in various codes. Mathematical models for six different cases are carried by software. The results extracted from the program have been plotted showing the effects of different variables on the ultimate load of column. The variables considered in our research are the spacing between columns and the thickness of the corrugated sheet representing the sheet stiffness.

Keywords: Stability of frames about minor axis, The effective length factor, Effect of secondary members on elastic buckling load column, The stiffness of sheeting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2799
210 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns

Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani

Abstract:

Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.

Keywords: Equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
209 A Robust Software for Advanced Analysis of Space Steel Frames

Authors: Viet-Hung Truong, Seung-Eock Kim

Abstract:

This paper presents a robust software package for practical advanced analysis of space steel framed structures. The pre- and post-processors of the presented software package are coded in the C++ programming language while the solver is written by using the FORTRAN programming language. A user-friendly graphical interface of the presented software is developed to facilitate the modeling process and result interpretation of the problem. The solver employs the stability functions for capturing the second-order effects to minimize modeling and computational time. Both the plastic-hinge and fiber-hinge beam-column elements are available in the presented software. The generalized displacement control method is adopted to solve the nonlinear equilibrium equations.

Keywords: Advanced analysis, beam-column, fiber-hinge, plastic hinge, steel frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
208 Finite Element Study of a DfD Beam-Column Connection

Authors: Zhi Sheng Lin, K. C. G. Ong, Lado Riannevo Chandra, Bee Hong Angeline Tan, Chat Tim Tam, Sze Dai Pang

Abstract:

Design for Disassembly (DfD) aims to reuse the structural components instead of demolition followed by recycling of the demolition debris. This concept preserves the invested embodied energy of materials, thus reducing inputs of new embodied energy during materials reprocessing or remanufacturing. Both analytical and experimental research on a proposed DfD beam-column connection for use in residential apartments is currently investigated at the National University of Singapore in collaboration with the Housing and Development Board of Singapore. The present study reports on the results of a numerical analysis of the proposed connection utilizing finite element analysis. The numerical model was calibrated and validated by comparison against experimental results. Results of a parametric study will also be presented and discussed.

Keywords: Design for Disassembly (DfD), finite element analysis, parametric study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
207 Simulation of Effect of Current Stressing on Reliability of Solder Joints with Cu-Pillar Bumps

Authors: Y. Li, Q. S. Zhang, H. Z. Huang, B. Y. Wu

Abstract:

The mechanism behind the electromigration and thermomigration failure in flip-chip solder joints with Cu-pillar bumps was investigated in this paper through using finite element method. Hot spot and the current crowding occurrs in the upper corner of copper column instead of solders of the common solder ball. The simulation results show that the change in thermal gradient is noticeable, which might greatly affect the reliability of solder joints with Cu-pillar bumps under current stressing. When the average applied current density is increased from 1×104 A/cm2 to 3×104 A/cm2 in solders, the thermal gradient would increase from 74 K/cm to 901 K/cm at an ambient temperature of 25°C. The force from thermal gradient of 901 K/cm can nearly induce thermomigration by itself. With the increase in applied current, the thermal gradient is growing. It is proposed that thermomigration likely causes a serious reliability issue for Cu column based interconnects.

Keywords: Simulation, Cu-pillar bumps, Electromigration, Thermomigration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
206 Advancement of Oscillating Water Column Wave Energy Technologies through Integrated Applications and Alternative Systems

Authors: S. Doyle, G. A. Aggidis

Abstract:

Wave energy converter technologies continue to show good progress in worldwide research. One of the most researched technologies, the Oscillating Water Column (OWC), is arguably one of the most popular categories within the converter technologies due to its robustness, simplicity and versatility. However, the versatility of the OWC is still largely untapped with most deployments following similar trends with respect to applications and operating systems. As the competitiveness of the energy market continues to increase, the demand for wave energy technologies to be innovative also increases. For existing wave energy technologies, this requires identifying areas to diversify for lower costs of energy with respect to applications and synergies or integrated systems. This paper provides a review of all OWCs systems integrated into alternative applications in the past and present. The aspects and variation in their design, deployment and system operation are discussed. Particular focus is given to the Multi-OWCs (M-OWCs) and their great potential to increase capture on a larger scale, especially in synergy applications. It is made clear that these steps need to be taken in order to make wave energy a competitive and viable option in the renewable energy mix as progression to date shows that stand alone single function devices are not economical. Findings reveal that the trend of development is moving toward these integrated applications in order to reduce the Levelised Cost of Energy (LCOE) and will ultimately continue in this direction in efforts to make wave energy a competitive option in the renewable energy mix.

Keywords: Ocean energy, wave energy, oscillating water column, renewable energy, review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
205 Amine Solution Recovery Package and Controlling Corrosion in Regeneration Tower

Authors: A.Atash J ameh

Abstract:

Sarkhoon gas plant, located in south of Iran, has been installed to removal H2S contained in a high pressure natural gas stream. The solvent used for the H2S removal from gaseous stream is 34% by weight (wt%) Di-ethanol amine (DEA) solutions. Due to increasing concentration of heat stable salt (HSS) in solvent, corrosivity of amine solution had been increased. Reports indicated that there was corrosion on the shell of regeneration column. Because source formation of HSS was unknown, we decided to control the amount of HSS at the limit less than 3% wt amine solvent. Therefore, two small columns were filled by strong anionic base and carbon active, and then polluted amine was passed through beds. Finally a temporary amine recovery package on industrial scale was made based on laboratory’s results. From economical point of view we could save $700000 beside corrosion occurrence of the stripping column has been vigorously decreased.

Keywords: Amines, corrosion, heat stable salt, resin anionic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
204 Robust Stability in Multivariable Neural Network Control using Harmonic Analysis

Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco, I. Garcia-Moral

Abstract:

Robust stability and performance are the two most basic features of feedback control systems. The harmonic balance analysis technique enables to analyze the stability of limit cycles arising from a neural network control based system operating over nonlinear plants. In this work a robust stability analysis based on the harmonic balance is presented and applied to a neural based control of a non-linear binary distillation column with unstructured uncertainty. We develop ways to describe uncertainty in the form of neglected nonlinear dynamics and high harmonics for the plant and controller respectively. Finally, conclusions about the performance of the neural control system are discussed using the Nyquist stability margin together with the structured singular values of the uncertainty as a robustness measure.

Keywords: Robust stability, neural network control, unstructured uncertainty, singular values, distillation column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
203 Replacement of Commercial Anti-Corrosion Material with a More Effective and Cost Efficient Compound Based on Electrolytic System Simulation

Authors: Saeid Khajehmandali, Fattah Mollakarimi, Zohreh Seyf

Abstract:

There was a high rate of corrosion in Pyrolysis Gasoline Hydrogenation (PGH) unit of Arak Petrochemical Company (ARPC), and it caused some operational problem in this plant. A commercial chemical had been used as anti-corrosion in the depentanizer column overhead in order to control the corrosion rate. Injection of commercial corrosion inhibitor caused some operational problems such as fouling in some heat exchangers. It was proposed to replace this commercial material with another more effective trouble free, and well-known additive by R&D and operation specialists. At first, the system was simulated by commercial simulation software in electrolytic system to specify low pH points inside the plant. After a very comprehensive study of the situation and technical investigations ,ammonia / monoethanol amine solution was proposed as neutralizer or corrosion inhibitor to be injected in a suitable point of the plant. For this purpose, the depentanizer column and its accessories system was simulated again in case of this solution injection. According to the simulation results, injection of new anticorrosion substance has no any side effect on C5 cut product and operating conditions of the column. The corrosion rate will be cotrolled, if the pH remains at the range of 6.5 to 8 . Aactual plant test run was also carried out by injection of ammonia / monoethanol amine solution at the rate of 0.6 Kg/hr and the results of iron content of water samples and corrosion test coupons confirmed the simulation results. Now, ammonia / monoethanol amine solution is injected to a suitable pint inside the plant and corrosion rate has decreased significantly.

Keywords: Corrosion, Pyrolysis Gasoline, Simulation, Corrosion test copoun.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
202 Reliability of Slender Reinforced Concrete Columns: Part 1

Authors: Metwally Abdel Aziz Ahmed, Ahmed Shaban Abdel Hay Gabr, Inas Mohamed Saleh

Abstract:

The main objective of structural design is to ensure safety and functional performance requirements of a structural system for its target reliability levels. In this study, the reliability index for the reinforcement concrete slender columns with rectangular cross section is studied. The variable parameters studied include the loads, the concrete compressive strength, the steel yield strength, the dimensions of concrete cross-section, the reinforcement ratio, and the location of steel placement. Risk analysis program was used to perform the analytical study. The effect of load eccentricity on the reliability index of reinforced concrete slender column was studied and presented. The results of this study indicate that the good quality control improve the performance of slender reinforced columns through increasing the reliability index β.

Keywords: Reliability, reinforced concrete, safety, slender column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
201 Closed Form Optimal Solution of a Tuned Liquid Column Damper Responding to Earthquake

Authors: A. Farshidianfar, P. Oliazadeh

Abstract:

In this paper the vibration behaviors of a structure equipped with a tuned liquid column damper (TLCD) under a harmonic type of earthquake loading are studied. However, due to inherent nonlinear liquid damping, it is no doubt that a great deal of computational effort is required to search the optimum parameters of the TLCD, numerically. Therefore by linearization the equation of motion of the single degree of freedom structure equipped with the TLCD, the closed form solutions of the TLCD-structure system are derived. To find the reliability of the analytical method, the results have been compared with other researcher and have good agreement. Further, the effects of optimal design parameters such as length ratio and mass ratio on the performance of the TLCD for controlling the responses of a structure are investigated by using the harmonic type of earthquake excitation. Finally, the Citicorp Center which has a very flexible structure is used as an example to illustrate the design procedure for the TLCD under the earthquake excitation.

Keywords: Closed form solution, Earthquake excitation, TLCD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
200 Using Mixed Amine Solution for Gas Sweetening

Authors: Zare Aliabadi, Hassan, Mirzaei, Somaye

Abstract:

The use of amine mixtures employing methyldiethanolamine (MDEA), monoethanolamine (MEA), and diethanolamine (DEA) have been investigated for a variety of cases using a process simulation program called HYSYS. The results show that, at high pressures, amine mixtures have little or no advantage in the cases studied. As the pressure is lowered, it becomes more difficult for MDEA to meet residual gas requirements and mixtures can usually improve plant performance. Since the CO2 reaction rate with the primary and secondary amines is much faster than with MDEA, the addition of small amounts of primary or secondary amines to an MDEA based solution should greatly improve the overall reaction rate of CO2 with the amine solution. The addition of MEA caused the CO2 to be absorbed more strongly in the upper portion of the column than for MDEA along. On the other hand, raising the concentration for MEA to 11%wt, CO2 is almost completely absorbed in the lower portion of the column. The addition of MEA would be most advantageous. Thus, in areas where MDEA cannot meet the residual gas requirements, the use of amine mixtures can usually improve the plant performance.

Keywords: CO2, H2S, Methyldiethanolamine, Monoethanolamine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3767
199 Decontamination of Cr(VI) Polluted Wastewater by use of Low Cost Industrial Wastes

Authors: Marius Gheju, Rodica Pode

Abstract:

The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using long-term column experiments, for aqueous Cr(VI) solutions having low buffering capacities, over the Cr(VI) concentration range of 5 – 40 mg/L. The results showed that the initial Cr(VI) concentration significantly affects the reduction capacity of scrap iron. Maximum reduction capacity of scrap iron was observed at the beginning of the column experiments; the lower the Cr(VI) concentration, the greater the experiment duration with maximum scrap iron reduction capacity. However, due to passivation of active surface, scrap iron reduction capacity continuously decreased in time, especially after Cr(VI) breakthrough. The experimental results showed that highest reduction capacity recorded until Cr(VI) breakthrough was 22.8 mg Cr(VI)/g scrap iron, at CI = 5 mg/L, and decreased with increasing Cr(VI) concentration. In order to assure total reduction of greater Cr(VI) concentrations for a longer period of time, either the mass of scrap iron filling, or the hydraulic retention time should be increased.

Keywords: hexavalent chromium, heavy metals, scrap iron, reduction capacity, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
198 Numerical Investigations on Group Piles’ Lateral Bearing Capacity Considering Interaction of Soil and Structure

Authors: Mahdi Sadeghian, Mahmoud Hassanlourad, Alireza Ardakani, Reza Dinarvand

Abstract:

In this research, the behavior of monopiles, under lateral loads, was investigated with vertical and oblique piles by Finite Element Method. In engineering practice when soil-pile interaction comes to the picture some simplifications are applied to reduce the design time. As a simplified replacement of soil and pile interaction analysis, pile could be replaced by a column. The height of the column would be equal to the free length of the pile plus a portion of the embedded length of it. One of the important factors studied in this study was that columns with an equivalent length (free length plus a part of buried depth) could be used instead of soil and pile modeling. The results of the analysis show that the more internal friction angle of the soil increases, the more the bearing capacity of the soil is achieved. This additional length is 6 to 11 times of the pile diameter in dense soil although in loose sandy soil this range might increase.

Keywords: Lateral bearing capacity, pile group, oblique pile, soil-structure interaction, depth of fixity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1030
197 A Parametric Assessment of Friction Damper in Eccentric Braced Frame

Authors: J. Vaseghi, S.Navaei, B. Navayinia, F. Roshantabari

Abstract:

In This paper, the behavior of eccentric braced frame (EBF) is studied with replacing friction damper (FD) in confluence of these braces, in 5 and 10-storey steel frames. For FD system, the main step is to determine the slip load. For this reason, the performance indexes include roof displacement, base shear, dissipated energy and relative performance should be investigated. In nonlinear dynamic analysis, the response of structure to three earthquake records has been obtained and the values of roof displacement, base shear and column axial force for FD and EBF frames have been compared. The results demonstrate that use of the FD in frames, in comparison with the EBF, substantially reduces the roof displacement, column axial force and base shear. The obtained results show suitable performance of FD in higher storey structure in comparison with the EBF.

Keywords: Friction Damper (FD), Slip Load, Nonlinear Dynamic Analysis, Performance Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2743
196 Experiments and Modeling of Ion Exchange Resins for Nuclear Power Plants

Authors: Aurélie Mabrouk, Vincent Lagneau, Caroline De Dieuleveult, Martin Bachet, Hélène Schneider, Christophe Coquelet

Abstract:

Resins are used in nuclear power plants for water ultrapurification. Two approaches are considered in this work: column experiments and simulations. A software called OPTIPUR was developed, tested and used. The approach simulates the onedimensional reactive transport in porous medium with convectivedispersive transport between particles and diffusive transport within the boundary layer around the particles. The transfer limitation in the boundary layer is characterized by the mass transfer coefficient (MTC). The influences on MTC were measured experimentally. The variation of the inlet concentration does not influence the MTC; on the contrary of the Darcy velocity which influences. This is consistent with results obtained using the correlation of Dwivedi&Upadhyay. With the MTC, knowing the number of exchange site and the relative affinity, OPTIPUR can simulate the column outlet concentration versus time. Then, the duration of use of resins can be predicted in conditions of a binary exchange.

Keywords: ion exchange resin, mass transfer coefficient, modeling, OPTIPUR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
195 Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain

Authors: M. Kakavand, S. A. Naeini

Abstract:

Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed – free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases.

Keywords: Dynamic properties, shear modulus, damping ratio, clean sand, density, confining pressure, resonant column/torsional simple shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
194 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves

Authors: Hanifeh Imanian, Morteza Kolahdoozan

Abstract:

The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.

Keywords: Dispersion, marine environment, mathematical-statistical relationship, oil spill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
193 Shadow Imaging Study of Z-Pinch Dynamic Hohlraum

Authors: Chen Faxin, Feng Jinghua, Yang Jianlun, Li Linbo, Zhou Lin

Abstract:

In order to obtaining the dynamic evolution image of Tungsten array for foam padding, and to research the form of interaction between Tungsten plasma and foam column, a shadow imaging system of four-frame ultraviolet probe laser (266nm)has been designed on 1MA pulse power device. The time resolution of the system is 2.5ns, and static space resolution is superior to 70μm. The radial shadowgraphy image reveals the whole process from the melting and expansion of solid wire to the interaction of the precursor plasma and the foam, from the pinch to rebound inflation. The image shows the continuous interaction of Tungsten plasma and foam in a form of “Raining" within a time of about 50ns, the plasma shell structure has not been found in the whole period of pinch. The quantitative analysis indicates the minimum pinching speed of the foam column is 1.0×106cm/s, and maximum pinching speed is 6.0×106cm/s, and the axial stagnation diameter is approx 1mm.

Keywords: Dynamic hohlraum, Shadowgraphy image, Foam evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
192 On the Evaluation of Critical Lateral-Torsional Buckling Loads of Monosymmetric Beam-Columns

Authors: T. Yilmaz, N. Kirac

Abstract:

Beam-column elements are defined as structural members subjected to a combination of axial and bending forces. Lateral torsional buckling is one of the major failure modes in which beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting. This study presents a compact closed-form equation that it can be used for calculating critical lateral torsional-buckling load of beam-columns with monosymmetric sections in the presence of a known axial load. Lateral-torsional buckling behavior of beam-columns subjected to constant axial force and various transverse load cases are investigated by using Ritz method in order to establish proposed equation. Lateral-torsional buckling loads calculated by presented formula are compared to finite element model results. ABAQUS software is utilized to generate finite element models of beam-columns. It is found out that lateral-torsional buckling load of beam-columns with monosymmetric sections can be determined by proposed equation and can be safely used in design.

Keywords: Lateral-torsional buckling, stability, beam-column, monosymmetric section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2803
191 Optimal Placement of Piezoelectric Actuators on Plate Structures for Active Vibration Control Using Modified Control Matrix and Singular Value Decomposition Approach

Authors: Deepak Chhabra, Gian Bhushan, Pankaj Chandna

Abstract:

The present work deals with the optimal placement of piezoelectric actuators on a thin plate using Modified Control Matrix and Singular Value Decomposition (MCSVD) approach. The problem has been formulated using the finite element method using ten piezoelectric actuators on simply supported plate to suppress first six modes. The sizes of ten actuators are combined to outline one actuator by adding the ten columns of control matrix to form a column matrix. The singular value of column control matrix is considered as the fitness function and optimal positions of the actuators are obtained by maximizing it with GA. Vibration suppression has been studied for simply supported plate with piezoelectric patches in optimal positions using Linear Quadratic regulator) scheme. It is observed that MCSVD approach has given the position of patches adjacent to each-other, symmetric to the centre axis and given greater vibration suppression than other previously published results on SVD. 

Keywords: Closed loop Average dB gain, Genetic Algorithm (GA), LQR Controller, MCSVD, Optimal positions, Singular Value Decomposition (SVD) Approaches.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3074
190 Simulation of Reactive Distillation: Comparison of Equilibrium and Nonequilibrium Stage Models

Authors: Asfaw Gezae Daful

Abstract:

In the present study, two distinctly different approaches are followed for modeling of reactive distillation column, the equilibrium stage model and the nonequilibrium stage model. These models are simulated with a computer code developed in the present study using MATLAB programming. In the equilibrium stage models, the vapor and liquid phases are assumed to be in equilibrium and allowance is made for finite reaction rates, where as in the nonequilibrium stage models simultaneous mass transfer and reaction rates are considered. These simulated model results are validated from the experimental data reported in the literature. The simulated results of equilibrium and nonequilibrium models are compared for concentration, temperature and reaction rate profiles in a reactive distillation column for Methyl Tert Butyle Ether (MTBE) production. Both the models show similar trend for the concentration, temperature and reaction rate profiles but the nonequilibrium model predictions are higher and closer to the experimental values reported in the literature.

Keywords: Reactive Distillation, Equilibrium model, Nonequilibrium model, Methyl Tert-Butyl Ether

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4207
189 Effects of Using Gusset Plate Stiffeners on the Seismic Performance of Concentrically Braced Frame

Authors: B. Mohebi, N. Asadi, F. Kazemi

Abstract:

Inelastic deformation of the brace in Special Concentrically Braced Frame (SCBF) creates inelastic damages on gusset plate connections such as buckling at edges. In this study, to improve the seismic performance of SCBFs connections, an analytical study was undertaken. To improve the gusset plate connection, this study proposes using ‎edge’s stiffeners in both sides of gusset plate.‎ For this purpose, in order to examine edge’s stiffeners effect on gusset plate connections, two groups of modeling with and without considering edge’s stiffener and different types of braces were modeled using ABAQUS software. The results show that considering the edge’s stiffener reduces the equivalent plastic strain values at a connection region of gusset plate with beam and column, which can improve the seismic performance of gusset plate. Furthermore, considering the edge’s stiffeners significantly decreases the strain concentration at regions where gusset plates have been connected to beam and column. Moreover, considering 2tpl distance causes reduction in the plastic strain.

Keywords: Special concentrically braced frame, gusset plate, edge’s stiffener, seismic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
188 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device

Authors: Muthana A. M. Jameel Al-Jaboori

Abstract:

In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.

Keywords: Water wave, model, wells turbine, MATLAB program, results.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
187 Seismic Performance of Reinforced Concrete Frames Infilled by Masonry Walls with Different Heights

Authors: Ji–Wook Mauk, Yu–Suk Kim, Hyung–Joon Kim

Abstract:

This study carried out comparative seismic performance of reinforced concrete frames infilled by masonry walls with different heights. Partial and fully infilled reinforced concrete frames were modeled for the research objectives and the analysis model for a bare reinforced concrete frame was also established for comparison. Non–linear static analyses for the studied frames were performed to investigate their structural behavior under extreme seismic loads and to find out their collapse mechanism. It was observed from analysis results that the strengths of the partial infilled reinforced concrete frames are increased and their ductilities are reduced, as infilled masonry walls are higher. Especially, reinforced concrete frames with higher partial infilled masonry walls would experience shear failures. Non–linear dynamic analyses using 10 earthquake records show that the bare and fully infilled reinforced concrete frame present stable collapse mechanism while the reinforced concrete frames with partially infilled masonry walls collapse in more brittle manner due to short-column effects.

Keywords: Fully infilled RC frame, partially infilled RC frame, masonry wall, short–column effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589
186 Seismic Behavior and Loss Assessment of High-Rise Buildings with Light Gauge Steel-Concrete Hybrid Structure

Authors: Bing Lu, Shuang Li, Hongyuan Zhou

Abstract:

The steel-concrete hybrid structure has been extensively employed in high-rise buildings and super high-rise buildings. The light gauge steel-concrete hybrid structure, including light gauge steel structure and concrete hybrid structure, is a type of steel-concrete hybrid structure, which possesses some advantages of light gauge steel structure and concrete hybrid structure. The seismic behavior and loss assessment of three high-rise buildings with three different concrete hybrid structures were investigated through finite element software. The three concrete hybrid structures are reinforced concrete column-steel beam (RC-S) hybrid structure, concrete-filled steel tube column-steel beam (CFST-S) hybrid structure, and tubed concrete column-steel beam (TC-S) hybrid structure. The nonlinear time-history analysis of three high-rise buildings under 80 earthquakes was carried out. After simulation, it indicated that the seismic performances of three high-rise buildings were superior. Under extremely rare earthquakes, the maximum inter-story drifts of three high-rise buildings are significantly lower than 1/50. The inter-story drift and floor acceleration of high-rise building with CFST-S hybrid structure were bigger than those of high-rise buildings with RC-S hybrid structure, and smaller than those of high-rise building with TC-S hybrid structure. Then, based on the time-history analysis results, the post-earthquake repair cost ratio and repair time of three high-rise buildings were predicted through an economic performance analysis method proposed in FEMA-P58 report. Under frequent earthquakes, basic earthquakes and rare earthquakes, the repair cost ratio and repair time of three high-rise buildings were less than 5% and 15 days, respectively. Under extremely rare earthquakes, the repair cost ratio and repair time of high-rise buildings with TC-S hybrid structure were the most among three high rise buildings. Due to the advantages of CFST-S hybrid structure, it could be extensively employed in high-rise buildings subjected to earthquake excitations.

Keywords: seismic behavior, loss assessment, light gauge steel, concrete hybrid structure, high-rise building, time-history analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 491