WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/6080,
	  title     = {Replacement of Commercial Anti-Corrosion Material with a More Effective and Cost Efficient Compound Based on Electrolytic System Simulation},
	  author    = {Saeid Khajehmandali and  Fattah Mollakarimi and  Zohreh Seyf},
	  country	= {},
	  institution	= {},
	  abstract     = {There was a high rate of corrosion in Pyrolysis
Gasoline Hydrogenation (PGH) unit of Arak Petrochemical Company
(ARPC), and it caused some operational problem in this plant. A
commercial chemical had been used as anti-corrosion in the
depentanizer column overhead in order to control the corrosion rate.
Injection of commercial corrosion inhibitor caused some
operational problems such as fouling in some heat exchangers. It was
proposed to replace this commercial material with another more
effective trouble free, and well-known additive by R&D and
operation specialists.
At first, the system was simulated by commercial simulation
software in electrolytic system to specify low pH points inside the
plant. After a very comprehensive study of the situation and technical
investigations ,ammonia / monoethanol amine solution was proposed
as neutralizer or corrosion inhibitor to be injected in a suitable point
of the plant. For this purpose, the depentanizer column and its
accessories system was simulated again in case of this solution
injection.
According to the simulation results, injection of new anticorrosion
substance has no any side effect on C5 cut product and
operating conditions of the column. The corrosion rate will be
cotrolled, if the pH remains at the range of 6.5 to 8 . Aactual plant
test run was also carried out by injection of ammonia / monoethanol
amine solution at the rate of 0.6 Kg/hr and the results of iron content
of water samples and corrosion test coupons confirmed the
simulation results.
Now, ammonia / monoethanol amine solution is injected to a
suitable pint inside the plant and corrosion rate has decreased
significantly.},
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {3},
	  number    = {9},
	  year      = {2009},
	  pages     = {537 - 542},
	  ee        = {https://publications.waset.org/pdf/6080},
	  url   	= {https://publications.waset.org/vol/33},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 33, 2009},
	}