Search results for: rail track stability.
164 Development and Characterization of Wheat Bread with Lupin Flour
Authors: Paula M. R. Correia, Marta Gonzaga, Luis M. Batista, Luísa Beirão-Costa, Raquel F. P. Guiné
Abstract:
The purpose of the present work was to develop an innovative food product with good textural and sensorial characteristics. The product, a new type of bread, was prepared with wheat (90%) and lupin (10%) flours, without the addition of any conservatives. Several experiences were also done to find the most appropriate proportion of lupin flour. The optimized product was characterized considering the rheological, physical-chemical and sensorial properties. The water absorption of wheat flour with 10% of lupin was higher than that of the normal wheat flours, and Wheat Ceres flour presented the lower value, with lower dough development time and high stability time. The breads presented low moisture but a considerable water activity. The density of bread decreased with the introduction of lupin flour. The breads were quite white, and during storage the colour parameters decreased. The lupin flour clearly increased the number of alveolus, but the total area increased significantly just for the Wheat Cerealis bread. The addition of lupin flour increased the hardness and chewiness of breads, but the elasticity did not vary significantly. Lupin bread was sensorially similar to wheat bread produced with WCerealis flour, and the main differences are the crust rugosity, colour and alveolus characteristics.
Keywords: Lupin flour, physical-chemical properties, sensorial analysis, wheat flour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556163 Effect of Chemical Pretreatments and Dehydration Methods on Quality Characteristics of Tomato Powder and Its Storage Stability
Authors: Reihaneh Ahmadzadeh Ghavidel, Mehdi Ghiafeh Davoodi
Abstract:
Dehydration process was carried out for tomato slices of var. Avinash after giving different pre-treatments such as calcium chloride (CaCl2), potassium metabisulphite (KMS), calcium chloride and potassium metabisulphite (CaCl2 +KMS), and sodium chloride (NaCl). Untreated samples served as control. Solar drier and continuous conveyor (tunnel) drier were used for dehydration. Quality characteristics of tomato slices viz. moisture content, sugar, titratable acidity, lycopene content, dehydration ratio, rehydration ratio and non-enzymatic browning as affected by dehydration process were studied. Storage study was also carried out for a period of six months for tomato powder packed into different types of packaging materials viz. metalized polyester (MP) film and low density poly ethylene (LDPE). Changes in lycopene content and non-enzymatic browning (NEB) were estimated during storage at room temperature. Pretreatment of 5 mm thickness of tomato slices with calcium chloride in combination with potassium metabisulphite and drying using a tunnel drier with subsequent storage of product in metalized polyester bags was selected as the best process.
Keywords: Drying pretreatments, Solar drying, Tomato powder, Tunnel drying
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2847162 Free Vibration of Axially Functionally Graded Simply Supported Beams Using Differential Transformation Method
Authors: A. Selmi
Abstract:
Free vibration analysis of homogenous and axially functionally graded simply supported beams within the context of Euler-Bernoulli beam theory is presented in this paper. The material properties of the beams are assumed to obey the linear law distribution. The effective elastic modulus of the composite was predicted by using the rule of mixture. Here, the complexities which appear in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using a relatively new approach called the Differential Transformation Method. This technique is applied for solving differential equation of transverse vibration of axially functionally graded beams. Natural frequencies and corresponding normalized mode shapes are calculated for different Young’s modulus ratios. MATLAB code is designed to solve the transformed differential equation of the beam. Comparison of the present results with the exact solutions proves the effectiveness, the accuracy, the simplicity, and computational stability of the differential transformation method. The effect of the Young’s modulus ratio on the normalized natural frequencies and mode shapes is found to be very important.
Keywords: Differential transformation method, functionally graded material, mode shape, natural frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793161 The Effection of Different Culturing Proportion of Deep Sea Water(DSW) to Surface Sea Water(SSW) in Reductive Ability and Phenolic Compositions of Sargassum Cristaefolium
Authors: H. L. Ku, K. C. Yang, S. Y. Jhou, S. C. Lee, C. S. Lin
Abstract:
Characterized as rich mineral substances, low temperature, few bacteria, and stability with numerous implementation aspects on aquaculture, food, drinking, and leisure, the deep sea water (DSW) development has become a new industry in the world. It has been report that marine algae contain various biologically active compounds. This research focued on the affections in cultivating Sagrassum cristaefolium with different concentration of deep sea water(DSW) and surface sea water(SSW). After two and four weeks, the total phenolic contents were compared in Sagrassum cristaefolium culturing with different ways, and the reductive activity of them was also be tried with potassium ferricyanide. Those fresh seaweeds were dried with oven and were ground to powder. Progressively, the marine algae we cultured was extracted by water under the condition with heating them at 90Ôäâ for 1hr.The total phenolic contents were be executed using Folin–Ciocalteu method. The results were explaining as follows: the highest total phenolic contents and the best reductive ability of all could be observed on the 1/4 proportion of DSW to SSW culturing in two weeks. Furthermore, the 1/2 proportion of DSW to SSW also showed good reductive ability and plentiful phenolic compositions. Finally, we confirmed that difference proportion of DSW and SSW is the major point relating to ether the total phenolic components or the reductive ability in the Sagrassum cristaefolium. In the future, we will use this way to mass production the marine algae or other micro algae on industry applications.Keywords: deep sea water(DSW), surface sea water(SSW), phenolic contents, reductive ability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627160 Solving Transient Conduction and Radiation Using Finite Volume Method
Authors: Ashok K. Satapathy, Prerana Nashine
Abstract:
Radiative heat transfer in participating medium was carried out using the finite volume method. The radiative transfer equations are formulated for absorbing and anisotropically scattering and emitting medium. The solution strategy is discussed and the conditions for computational stability are conferred. The equations have been solved for transient radiative medium and transient radiation incorporated with transient conduction. Results have been obtained for irradiation and corresponding heat fluxes for both the cases. The solutions can be used to conclude incident energy and surface heat flux. Transient solutions were obtained for a slab of heat conducting in slab and by thermal radiation. The effect of heat conduction during the transient phase is to partially equalize the internal temperature distribution. The solution procedure provides accurate temperature distributions in these regions. A finite volume procedure with variable space and time increments is used to solve the transient radiation equation. The medium in the enclosure absorbs, emits, and anisotropically scatters radiative energy. The incident radiations and the radiative heat fluxes are presented in graphical forms. The phase function anisotropy plays a significant role in the radiation heat transfer when the boundary condition is non-symmetric.
Keywords: Participating media, finite volume method, radiation coupled with conduction, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2972159 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components
Authors: Jaimala Gambhir, Tilak Thakur, Puneet Chawla
Abstract:
As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, Fault Ride Through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664158 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation
Authors: W. Du, X. Wang, Jun Cao, H. F. Wang
Abstract:
Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.
Keywords: Frequency regulation, virtual inertia control, installation locations, observability, wind farms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158157 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification
Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah
Abstract:
The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.
Keywords: Aircraft aerodynamic model, Microsoft flight simulator, MQ-1 Predator, total least squares estimation, piloting the aircraft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682156 PSS with Multiple FACTS Controllers Coordinated Design and Real-Time Implementation Using Advanced Adaptive PSO
Authors: Rajendraprasad Narne, P. C. Panda
Abstract:
In this article, coordinated tuning of power system stabilizer (PSS) with static var compensator (SVC) and thyristor controlled series capacitor (TCSC) in multi-machine power system is proposed. The design of proposed coordinated damping controller is formulated as an optimization problem and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization (AAPSO). The objective function is framed with the inter-area speed deviations of the generators and it is minimized using AAPSO to improve the dynamic stability of power system under severe disturbance. The proposed coordinated controller performance is evaluated under a wide range of system operating conditions with three-phase fault disturbance. Using time domain simulations the damping characteristics of proposed controller is compared with individually tuned PSS, SVC and TCSC controllers. Finally, the real-time simulations are carried out in Opal-RT hardware simulator to synchronize the proposed controller performance in the real world.
Keywords: Advanced adaptive particle swarm optimization, Coordinated design, Power system stabilizer, Real-time implementation, static var compensator, Thyristor controlled series capacitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596155 PSO Based Weight Selection and Fixed Structure Robust Loop Shaping Control for Pneumatic Servo System with 2DOF Controller
Authors: Randeep Kaur, Jyoti Ohri
Abstract:
This paper proposes a new technique to design a fixed-structure robust loop shaping controller for the pneumatic servosystem. In this paper, a new method based on a particle swarm optimization (PSO) algorithm for tuning the weighting function parameters to design an H∞ controller is presented. The PSO algorithm is used to minimize the infinity norm of the transfer function of the nominal closed loop system to obtain the optimal parameters of the weighting functions. The optimal stability margin is used as an objective in PSO for selecting the optimal weighting parameters; it is shown that the proposed method can simplify the design procedure of H∞ control to obtain optimal robust controller for pneumatic servosystem. In addition, the order of the proposed controller is much lower than that of the conventional robust loop shaping controller, making it easy to implement in practical works. Also two-degree-of-freedom (2DOF) control design procedure is proposed to improve tracking performance in the face of noise and disturbance. Result of simulations demonstrates the advantages of the proposed controller in terms of simple structure and robustness against plant perturbations and disturbances.
Keywords: Robust control, Pneumatic Servosystem, PSO, H∞ control, 2DOF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436154 The Effect of Micro Tools Fabricated Dent on Alumina/Alumina Oxide Interface
Authors: Taposh Roy, Dipankar Choudhury, Belinda Pingguan-Murphy
Abstract:
The tribological outcomes of micro dent are found to be outstanding in many engineering and natural surfaces. Ceramic (Al2O3) is considered one of the most potential material to bearing surfaces particularly, artificial hip or knee implant. A well-defined micro dent on alumina oxide interface could further decrease friction and wear rate, thus increase their stability and durability. In this study we fabricated circular micro dent surface profiles (Dia: 400µm, Depth 20µm, P: 1.5mm; Dia: 400µm, Depth 20µm, P: 2mm) on pure Al2O3 (99.6%) substrate by using a micro tool machines. A preliminary tribological experiment was carried out to compare friction coefficient of these fabricated dent surfaces with that of non-textured surfaces. The experiment was carried on well know pin-on-disk specimens while other experimental parameters such as hertz pressure, speed, lubrication, and temperature were maintained to standard of simulated hip joints condition. The experiment results revealed that micro dent surface texture reduced 15%, 8% and 4% friction coefficient under 0.132,0.162, 0.187 GPa contact pressure respectively. Since this is a preliminary tribological study, we will pursue further experiments considering higher ranges of dent profiles and longer run experiments. However, the preliminary results confirmed the suitability of fabricating dent profile to ceramic surfaces by using micro tooling, and also their improved tribological performance in simulated hip joints.
Keywords: Micro dent, tribology, ceramic on ceramic hipjoints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2351153 Stabilizing Effects of Deep Eutectic Solvents on Alcohol Dehydrogenase Mediated Systems
Authors: Fatima Zohra Ibn Majdoub Hassani, Ivan Lavandera, Joseph Kreit
Abstract:
This study explored the effects of different organic solvents, temperature, and the amount of glycerol on the alcohol dehydrogenase (ADH)-catalysed stereoselective reduction of different ketones. These conversions were then analyzed by gas chromatography. It was found that when the amount of deep eutectic solvents (DES) increases, it can improve the stereoselectivity of the enzyme although reducing its ability to convert the substrate into the corresponding alcohol. Moreover, glycerol was found to have a strong stabilizing effect on the ADH from Ralstonia sp. (E. coli/ RasADH). In the case of organic solvents, it was observed that the best conversions into the alcohols were achieved with DMSO and hexane. It was also observed that temperature decreased the ability of the enzyme to convert the substrates into the products and also affected the selectivity. In addition to that, the recycling of DES up to three times gave good conversions and enantiomeric excess results and glycerol showed a positive effect in the stability of various ADHs. Using RasADH, a good conversion and enantiomeric excess into the S-alcohol were obtained. It was found that an enhancement of the temperature disabled the stabilizing effect of glycerol and decreased the stereoselectivity of the enzyme. However, for other ADHs a temperature increase had an opposite positive effect, especially with ADH-T from Thermoanaerobium sp. One of the objectives of this study was to see the effect of cofactors such as NAD(P) on the biocatlysis activities of ADHs.
Keywords: Alcohol dehydrogenases, DES, gas chromatography, RasADH.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153152 Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC
Authors: Taqi Zahid Butt, Tanveer Ahmad Tabish
Abstract:
Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.Keywords: Martensitic stainless steel corrosion, microstructure, vacuum furnace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652151 Colour Stability of Wild Cactus Pear Juice
Authors: Kgatla T.E, Howard S.S., Hiss D.C.
Abstract:
Prickly pear (Opuntia spp) fruit has received renewed interest since it contains a betalain pigment that has an attractive purple colour for the production of juice. Prickly pear juice was prepared by homogenizing the fruit and treating the pulp with 48 g of pectinase from Aspergillus niger. Titratable acidity was determined by diluting 10 ml prickly pear juice with 90 ml deionized water and titrating to pH 8.2 with 0.1 N NaOH. Brix was measured using a refractometer and ascorbic acid content assayed spectrophotometrically. Colour variation was determined colorimetrically (Hunter L.a.b.). Hunter L.a.b. analysis showed that the red purple colour of prickly pear juice had been affected by juice treatments. This was indicated by low light values of colour difference meter (CDML*), hue, CDMa* and CDMb* values. It was observed that non-treated prickly pear juice had a high (colour difference meter of light) CDML* of 3.9 compared to juice treatments (range 3.29 to 2.14). The CDML* significantly (p<0.05) decreased as the juice was preserved. Spectrophotometric colour analysis showed that browning was low in all treated prickly juice samples as indicated by high values at 540 nm and low values at 476 nm (browning index). The brightness of prickly pear had been affected by acidification compared to other juice treatments. This study presents evidence that processing has a positive effect on the colour quality attribute that offers a clear advantage for the production of red-purple prickly pear juice.Keywords: Colour, Hunter L.a.b, Prickly pear juice, processing, physicochemical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2835150 Flutter Analysis of Slender Beams with Variable Cross Sections Based on Integral Equation Formulation
Authors: Z. El Felsoufi, L. Azrar
Abstract:
This paper studies a mathematical model based on the integral equations for dynamic analyzes numerical investigations of a non-uniform or multi-material composite beam. The beam is subjected to a sub-tangential follower force and elastic foundation. The boundary conditions are represented by generalized parameterized fixations by the linear and rotary springs. A mathematical formula based on Euler-Bernoulli beam theory is presented for beams with variable cross-sections. The non-uniform section introduces non-uniformity in the rigidity and inertia of beams and consequently, more complicated equilibrium who governs the equation. Using the boundary element method and radial basis functions, the equation of motion is reduced to an algebro-differential system related to internal and boundary unknowns. A generalized formula for the deflection, the slope, the moment and the shear force are presented. The free vibration of non-uniform loaded beams is formulated in a compact matrix form and all needed matrices are explicitly given. The dynamic stability analysis of slender beam is illustrated numerically based on the coalescence criterion. A realistic case related to an industrial chimney is investigated.
Keywords: Chimney, BEM and integral equation formulation, non uniform cross section, vibration and Flutter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625149 The Quality of Working Life and the Organizational Commitment of Municipal Employee in Samut Sakhon Province
Authors: Mananya Meenakorn
Abstract:
This research aims to investigate: (1) Relationship between the quality of working life and organizational commitment of municipal employee in Samut Sakhon Province. (2) To compare the quality of working life and the organizational commitment of municipal employee in Samut Sakhon Province by the gender, age, education, official experience, position, division, and income. This study is a quantitative research; data was collected by questionnaires distributed to the municipal employee in Samut Sakhon province for 241 sample by stratified random sampling. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including t-test, F-test and Pearson correlation for hypothesis testing. Finding showed that the quality of working life and the organizational commitment of municipal Employee in Samut Sakhon province in terms of compensation and fair has a positive correlation (r = 0.673) and the comparison of the quality of working life and organizational commitment of municipal employees in Samut Sakhon province by gender. We found that the overall difference was statistically significant at the 0.05 level and we also found stability and progress in career path and the characteristics are beneficial to society has a difference was statistically significant at the 0.01 level, and the participation and social acceptance has a difference was statistically significant at the 0.05 level.
Keywords: Quality of working life, organizational commitment, municipal employee, Samut Sakhon province.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882148 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon
Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison
Abstract:
Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.
Keywords: Asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455147 Revolutionizing Product Packaging: The Impact of Transparent Graded Lanes on Ketchup and Edible Oil Containers on Consumer Behavior
Authors: Saeid Asghari
Abstract:
The growing interest in sustainability and healthy lifestyles has stimulated the development of solutions that promote mindful consumption and healthier choices. One such solution is the use of transparent graded lanes in product packaging, which enables consumers to visually track their product consumption and encourages portion control. However, the influence of packaging on consumer behavior, trust, and brand loyalty, as well as the effectiveness of messaging on transparent graded lanes, is still not well understood. This research seeks to explore the effects of transparent graded lanes on consumer reactions of the Janbo chain supermarkets in Tehran, Iran, focusing on ketchup and edible oil containers. A representative sample of 720 respondents is selected using quota sampling based on sex, age, and financial status. The study assesses the effect of messaging on the graded lanes in enhancing consumer recall and recognition of the product at the time of purchase, increasing repeated purchases, and fostering long-term relationships with customers. Furthermore, the potential outcomes of using transparent graded lanes, including the promotion of healthy consumption habits and the reduction of food waste, are also considered. The findings and results can inform the development of effective messaging strategies for graded lanes and suggest ways to enhance consumer engagement with product packaging. Moreover, the study's outcomes can contribute to the broader discourse on sustainable consumption and healthy lifestyles, highlighting the potential role of packaging innovations in promoting these values. We used four theories (social cognitive theory, self-perception theory, nudge theory, and marketing and consumer behavior) to examine the effect of these transparent graded lanes on consumer behavior. The conceptual model integrates the use of transparent graded lanes, consumer behavior, trust and loyalty, messaging, and promotion of healthy consumption habits. The study aims to provide insights into how transparent graded lanes can promote mindful consumption, increase consumer recognition and recall of the product, and foster long-term relationships with customers. These innovative packaging designs not only encourage mindful consumption but also promote healthier choices. The communication on the categorized lanes is likewise discovered to be efficient in fostering remembrance and identification of the merchandise during the point of sale and stimulating recurrent acquisition. However, the impact of transparent graded lanes may be limited by factors such as cultural norms, personal values, and financial status. Broadly speaking, the investigation provides valuable insights into the potential benefits and challenges of using transparent graded lanes in product packaging, as well as effective strategies for promoting healthy consumption habits and building long-term relationships with customers.
Keywords: Packaging, customer behavior, purchase, brand loyalty, healthy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 263146 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences
Authors: Alisha Khanal, Gokhan Saygili
Abstract:
It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.
Keywords: Seismic slope stability, sliding displacement, mainshock, aftershock, landslide, earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912145 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System
Authors: Man Young Kim
Abstract:
Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.
Keywords: Catalytic combustion, Methane, BOP, MCFC power generation system, Inlet temperature, Excess air ratio, Space velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181144 Development and in vitro Characterization of Self-nanoemulsifying Drug Delivery Systems of Valsartan
Authors: P. S. Rajinikanth, Yeoh Suyu, Sanjay Garg
Abstract:
The present study is aim to prepare and evaluate the selfnanoemulsifying drug delivery (SNEDDS) system of a poorly water soluble drug valsartan in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. The present research work describes a SNEDDS of valsartan using labrafil M 1944 CS, Tween 80 and Transcutol HP. The pseudoternary phase diagrams with presence and absence of drug were plotted to check for the emulsification range and also to evaluate the effect of valsartan on the emulsification behavior of the phases. The mixtures consisting of oil (labrafil M 1944 CS) with surfactant (tween 80), co-surfactant (Transcutol HP) were found to be optimum formulations. Prepared formulations were evaluated for its particle size distribution, nanoemulsifying properties, robustness to dilution, self emulsication time, turbidity measurement, drug content and invitro dissolution. The optimized formulations are further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential were carried out to confirm the stability of the formed SNEDDS formulations. The prepared formulation revealed t a significant improvement in terms of the drug solubility as compared with marketed tablet and pure drug.
Keywords: Self Emulsifying Drug Delivery System, Valsartan, Bioavailability, poorly soluble drug.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685143 Numerical Simulation on Deformation Behaviour of Additively Manufactured AlSi10Mg Alloy
Authors: Racholsan Raj Nirmal, B. S. V. Patnaik, R. Jayaganthan
Abstract:
The deformation behaviour of additively manufactured AlSi10Mg alloy under low strains, high strain rates and elevated temperature conditions is essential to analyse and predict its response against dynamic loading such as impact and thermomechanical fatigue. The constitutive relation of Johnson-Cook is used to capture the strain rate sensitivity and thermal softening effect in AlSi10Mg alloy. Johnson-Cook failure model is widely used for exploring damage mechanics and predicting the fracture in many materials. In this present work, Johnson-Cook material and damage model parameters for additively manufactured AlSi10Mg alloy have been determined numerically from four types of uniaxial tensile test. Three different uniaxial tensile tests with dynamic strain rates (0.1, 1, 10, 50, and 100 s-1) and elevated temperature tensile test with three different temperature conditions (450 K, 500 K and 550 K) were performed on 3D printed AlSi10Mg alloy in ABAQUS/Explicit. Hexahedral elements are used to discretize tensile specimens and fracture energy value of 43.6 kN/m was used for damage initiation. Levenberg Marquardt optimization method was used for the evaluation of Johnson-Cook model parameters. It was observed that additively manufactured AlSi10Mg alloy has shown relatively higher strain rate sensitivity and lower thermal stability as compared to the other Al alloys.
Keywords: ABAQUS, additive manufacturing, AlSi10Mg, Johnson-Cook model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159142 AI-Driven Cloud Security: Proactive Defense Against Evolving Cyber Threats
Authors: Ashly Joseph
Abstract:
Cloud computing has become an essential component of enterprises and organizations globally in the current era of digital technology. The cloud has a multitude of advantages, including scalability, flexibility, and cost-effectiveness, rendering it an appealing choice for data storage and processing. The increasing storage of sensitive information in cloud environments has raised significant concerns over the security of such systems. The frequency of cyber threats and attacks specifically aimed at cloud infrastructure has been increasing, presenting substantial dangers to the data, reputation, and financial stability of enterprises. Conventional security methods can become inadequate when confronted with ever intricate and dynamic threats. Artificial Intelligence (AI) technologies possess the capacity to significantly transform cloud security through their ability to promptly identify and thwart assaults, adjust to emerging risks, and offer intelligent perspectives for proactive security actions. The objective of this research study is to investigate the utilization of AI technologies in augmenting the security measures within cloud computing systems. This paper aims to offer significant insights and recommendations for businesses seeking to protect their cloud-based assets by analyzing the present state of cloud security, the capabilities of AI, and the possible advantages and obstacles associated with using AI into cloud security policies.
Keywords: Machine Learning, Natural Learning Processing, Denial-of-Service attacks, Sentiment Analysis, Cloud computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248141 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes
Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak
Abstract:
The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the singleaxis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.Keywords: Biomass, briquettes, densification, fuel quality, moisture content, density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2773140 Steady State Power Flow Calculations with STATCOM under Load Increase Scenario and Line Contingencies
Authors: A. S. Telang, P. P. Bedekar
Abstract:
Flexible AC transmission system controllers play an important role in controlling the line power flow and in improving voltage profiles of the power system network. They can be used to increase the reliability and efficiency of transmission and distribution system. The modeling of these FACTS controllers in power flow calculations have become a challenging research problem. This paper presents a simple and systematic approach for a steady state power flow calculations of power system with STATCOM (Static Synchronous Compensator). It shows how systematically STATCOM can be implemented in conventional power flow calculations. The main contribution of this paper is to investigate this approach for two special conditions i.e. consideration of load increase pattern incorporating load change (active, reactive and both active and reactive) at all load buses simultaneously and the line contingencies under such load change. Such investigation proves to be relevant for determination of strategy for the optimal placement of STATCOM to enhance the voltage stability. The performance has been evaluated on many standard IEEE test systems. The results for standard IEEE-30 bus test system are presented here.Keywords: Load flow analysis, Newton-Raphson (N-R) power flow, Flexible AC transmission system, FACTS, Static synchronous compensator, STATCOM, voltage profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175139 Analysis of Precipitation and Temperature Trends in Sefid-Roud Basin
Authors: Amir Gandomkar, Tahereh Soltani Gord faramarzi, Parisa Safaripour Chafi, Abdol-Reza Amani
Abstract:
Temperature, humidity and precipitation in an area, are parameters proved influential in the climate of that area, and one should recognize them so that he can determine the climate of that area. Climate changes are of primary importance in climatology, and in recent years, have been of great concern to researchers and even politicians and organizations, for they can play an important role in social, political and economic activities. Even though the real cause of climate changes or their stability is not yet fully recognized, they are a matter of concern to researchers and their importance for countries has prompted them to investigate climate changes in different levels, especially in regional, national and continental level. This issue has less been investigated in our country. However, in recent years, there have been some researches and conferences on climate changes. This study is also in line with such researches and tries to investigate and analyze the trends of climate changes (temperature and precipitation) in Sefid-roud (the name of a river) basin. Three parameters of mean annual precipitation, temperature, and maximum and minimum temperatures in 36 synoptic and climatology stations in a statistical period of 49 years (1956-2005) in the stations of Sefid-roud basin were analyzed by Mann-Kendall test. The results obtained by data analysis show that climate changes are short term and have a trend. The analysis of mean temperature revealed that changes have a significantly rising trend, besides the precipitation has a significantly falling trend.Keywords: Trend, Climate changes, Sefid-roud, Mann-Kendall
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760138 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application
Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb
Abstract:
This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.
Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3049137 Action Potential Propagation in Inhomogeneous 2D Mouse Ventricular Tissue Model
Authors: Mouse, cardiac myocytes, computer simulation, action potential.
Abstract:
Heterogeneous repolarization causes dispersion of the T-wave and has been linked to arrhythmogenesis. Such heterogeneities appear due to differential expression of ionic currents in different regions of the heart, both in healthy and diseased animals and humans. Mice are important animals for the study of heart diseases because of the ability to create transgenic animals. We used our previously reported model of mouse ventricular myocytes to develop 2D mouse ventricular tissue model consisting of 14,000 cells (apical or septal ventricular myocytes) and to study the stability of action potential propagation and Ca2+ dynamics. The 2D tissue model was implemented as a FORTRAN program code for highperformance multiprocessor computers that runs on 36 processors. Our tissue model is able to simulate heterogeneities not only in action potential repolarization, but also heterogeneities in intracellular Ca2+ transients. The multicellular model reproduced experimentally observed velocities of action potential propagation and demonstrated the importance of incorporation of realistic Ca2+ dynamics for action potential propagation. The simulations show that relatively sharp gradients of repolarization are predicted to exist in 2D mouse tissue models, and they are primarily determined by the cellular properties of ventricular myocytes. Abrupt local gradients of channel expression can cause alternans at longer pacing basic cycle lengths than gradual changes, and development of alternans depends on the site of stimulation.
Keywords: Mouse, cardiac myocytes, computer simulation, action potential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479136 Transmission Model for Plasmodium Vivax Malaria: Conditions for Bifurcation
Authors: P. Pongsumpun, I.M. Tang
Abstract:
Plasmodium vivax malaria differs from P. falciparum malaria in that a person suffering from P. vivax infection can suffer relapses of the disease. This is due the parasite being able to remain dormant in the liver of the patients where it is able to re-infect the patient after a passage of time. During this stage, the patient is classified as being in the dormant class. The model to describe the transmission of P. vivax malaria consists of a human population divided into four classes, the susceptible, the infected, the dormant and the recovered. The effect of a time delay on the transmission of this disease is studied. The time delay is the period in which the P. vivax parasite develops inside the mosquito (vector) before the vector becomes infectious (i.e., pass on the infection). We analyze our model by using standard dynamic modeling method. Two stable equilibrium states, a disease free state E0 and an endemic state E1, are found to be possible. It is found that the E0 state is stable when a newly defined basic reproduction number G is less than one. If G is greater than one the endemic state E1 is stable. The conditions for the endemic equilibrium state E1 to be a stable spiral node are established. For realistic values of the parameters in the model, it is found that solutions in phase space are trajectories spiraling into the endemic state. It is shown that the limit cycle and chaotic behaviors can only be achieved with unrealistic parameter values.
Keywords: Equilibrium states, Hopf bifurcation, limit cyclebehavior, local stability, Plasmodium Vivax, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248135 Mathematical Model for the Transmission of P. Falciparum and P. Vivax Malaria along the Thai-Myanmar Border
Authors: Puntani Pongsumpun, I-Ming Tang
Abstract:
The most Malaria cases are occur along Thai-Mynmar border. Mathematical model for the transmission of Plasmodium falciparum and Plasmodium vivax malaria in a mixed population of Thais and migrant Burmese living along the Thai-Myanmar Border is studied. The population is separated into two groups, Thai and Burmese. Each population is divided into susceptible, infected, dormant and recovered subclasses. The loss of immunity by individuals in the infected class causes them to move back into the susceptible class. The person who is infected with Plasmodium vivax and is a member of the dormant class can relapse back into the infected class. A standard dynamical method is used to analyze the behaviors of the model. Two stable equilibrium states, a disease-free state and an epidemic state, are found to be possible in each population. A disease-free equilibrium state in the Thai population occurs when there are no infected Burmese entering the community. When infected Burmese enter the Thai community, an epidemic state can occur. It is found that the disease-free state is stable when the threshold number is less than one. The epidemic state is stable when a second threshold number is greater than one. Numerical simulations are used to confirm the results of our model.
Keywords: Basic reproduction number, Burmese, local stability, Plasmodium Vivax malaria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873