Action Potential Propagation in Inhomogeneous 2D Mouse Ventricular Tissue Model
Authors: Mouse, cardiac myocytes, computer simulation, action potential.
Abstract:
Heterogeneous repolarization causes dispersion of the T-wave and has been linked to arrhythmogenesis. Such heterogeneities appear due to differential expression of ionic currents in different regions of the heart, both in healthy and diseased animals and humans. Mice are important animals for the study of heart diseases because of the ability to create transgenic animals. We used our previously reported model of mouse ventricular myocytes to develop 2D mouse ventricular tissue model consisting of 14,000 cells (apical or septal ventricular myocytes) and to study the stability of action potential propagation and Ca2+ dynamics. The 2D tissue model was implemented as a FORTRAN program code for highperformance multiprocessor computers that runs on 36 processors. Our tissue model is able to simulate heterogeneities not only in action potential repolarization, but also heterogeneities in intracellular Ca2+ transients. The multicellular model reproduced experimentally observed velocities of action potential propagation and demonstrated the importance of incorporation of realistic Ca2+ dynamics for action potential propagation. The simulations show that relatively sharp gradients of repolarization are predicted to exist in 2D mouse tissue models, and they are primarily determined by the cellular properties of ventricular myocytes. Abrupt local gradients of channel expression can cause alternans at longer pacing basic cycle lengths than gradual changes, and development of alternans depends on the site of stimulation.
Keywords: Mouse, cardiac myocytes, computer simulation, action potential
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1086075
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480References:
1] C. H. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circ. Res., vol. 74, pp. 1071-1096, Jun. 1994.[2] M. S. Jafri, J. J. Rice, and R. L. Winslow, Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load, Biophys. J., vol. 74, pp. 1149-1168, Mar. 1998.
[3] S. V. Pandit, R. B. Clark, W. R. Giles, and S. S. Demir, A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes, Biophys. J., vol. 81, pp. 3029-3051, Dec. 2001.
[4] V. E. Bondarenko, G. P. Szigeti, G. C. L. Bett, S.-J. Kim, and R. L. Rasmusson, Computer model of action potential of mouse ventricular myocytes, Am. J. Physiol., vol. 287, pp. H1378-H1403, Sep. 2004.
[5] D. Noble and Y. Rudy, Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation, Phil. Trans. R. Soc. Lond. A, vol. 359, pp. 1127-1142, Jun. 2001.
[6] J. L. Puglisi, F. Wang, and D. M. Bers, Modeling the isolated cardiac myocyte, Prog. Biophys. Mol. Biol., vol. 85, pp. 163-178, Jun.-Jul. 2004.
[7] Y. Rudy and J. R. Silva, Computational biology in the study of cardiac ion channels and cell electrophysiology, Q. Rev. Biophys., vol. 39, pp. 57-116, Feb. 2006.
[8] J. M. Nerbonne, C. G. Nichols, T. L. Schwarz, and D. Escande, Genetic manipulation of cardiac K+ channel function in mice: what have we learned, and where do we go from here? Circ. Res., vol. 89, pp. 944-956, Nov. 2001.
[9] C. S. Henriquez, J. V. Tranquillo, D. Weinstein, E. W. Hsu, and C. R. Johnson, Three-dimensional propagation in mathematic models: Integrative model of the mouse heart, in Cardiac Electrophysiology: From Cell to Bedside, 4th ed., D. P. Zipes and J. Jalife, Eds. Philadelphia, PA: Saunders, 2004, pp. 273-281.
[10] K. J. Sampson and C. S. Henriquez, Electrotonic influences on action potential duration dispersion in small hearts: a simulation study, Am. J. Physiol., vol. 289, pp. H350-H360, Jul. 2005.
[11] L. C. Baker, B. London, B.-R. Choi, G. Koren, and G. Salama, Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia, Circ. Res.,vol. 86, pp. 396-407, Mar. 2000.
[12] B. C. Knollmann, A. N. Katchman, and M. R. Franz, Monophasic action potential recordings from intact mouse heart: validation, regional heterogeneity, and relation to refractoriness, J. Cardiovasc. Electrophysiol., vol. 12, pp. 1286-1294, Nov. 2001.
[13] L. C. Baker, R. Wolk, B.-R. Choi, S. Watkins, P. Plan, A. Shah, and G. Salama, Effects of mechanical uncouplers, diacetyl monoxime, and cytochalasin-D on the electrophysiology of perfused mouse hearts, Am.J. Physiol., vol. 287, pp. H1771-H1779, Oct. 2004.
[14] D. E. Gutstein, G. E. Morley, H. Tamaddon, D. Vaidya, M. D. Schneider, J. Chen, K. R. Chien, H. Stuhlmann, and G. I. Fishman, Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43, Circ. Res., vol. 88, pp. 333-339, Feb. 2001.
[15] T. R. Chay, Proarrhythmic and antiarrhythmic actions of ion channel blockers on arrhythmias in the heart: model study, Am. J. Physiol., vol. 271, pp. H329-H356, Jul. 1996.
[16] D. Vaidya, G. E. Morley, F. H. Samie, and J. Jalife, Reentry and fibrillation in the mouse heart. A challenge to the critical mass hypothesis, Circ. Res., vol. 85, pp. 174-181, Jul. 1999.
[17] R. B. Clark, A. Tremblay, P. Melnyk, B. G. Allen, W. R. Giles, and C. Ficet, T-tubule localization of the inward-rectifier K+ channel in mouse ventricular myocytes: a role in K+ accumulation, J. Physiol., vol. 537, pp. 979-992, Dec. 2001.
[18] M. C. Olsson, B. M. Palmer, B. L. Stauffer, L. A. Leinwand, and R. L. Moore, Morphological and functional alterations in ventricular myocytes from male transgenic mice with hypertrophic cardiomyopathy, Circ. Res., vol. 94, pp. 201-207, Feb. 2004.
[19] H. V. M. van Rijen, D. Eckardt, J. Degen, M. Theis, T. Ott, K. Willecke, H. J. Jongsma, T. Opthof, and J. M. T. de Bakker, Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43, Circulation, vol. 109, pp. 1048-1055, Mar. 2004.
[20] S. Bagwe, O. Berenfeld, D. Vaidya, G. E. Morley, and J. Jalife, Altered right atrial excitation and propagation in connexin40 knockout mice, Circulation, vol. 112, pp. 2245-2253, Oct. 2005.
[21] H. V. Huikuri, A. Castellanos, and R. J. Myerburg, Sudden death due to cardiac arrhythmias, N. Engl. J. Med., vol. 345, pp. 1473-1482, Nov. 2001.
[22] M. E. Curran, I. Splawski, K. W. Timothy, G. M. Vincent, E. D. Green, and M. T. Keating, A molecular basis for cardiac arrhythmia: HERGmutations cause long QT syndrome, Cell, vol. 80, pp. 795-803, Mar. 1995.
[23] M. C. Sanguinetti, C. Jiang, M. E. Curran, and M. T. Keating, A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel, Cell, vol. 81, pp. 299-307, Apr. 1995.
[24] N. Wiener and A. Rosenbluth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle, Arch. Inst. Cardiol. Mexico,vol. 16, pp. 205-265, 1946.
[25] G. K. Moe, W. C. Rheinboldt, and J. A. Abildskov, A computer model of atrial fibrillation, Am. Heart. J., vol. 67, pp. 200-220, Feb. 1964.
[26] V. I. Krinskii, Excitation propagation in nonhomogenous medium (actions analogous to heart fibrillation), Biofizika, vol. 11, pp. 676-683, Jul.-Aug. 1966.
[27] V. I. Krinsky, Mathematical models of cardiac arrhythmias (spiral waves), Pharmacol. Ther. B, vol. 3, pp. 539-555, 1978.
[28] F. J. van Capelle and D. Durrer, Computer simulation of arrhythmias in a network of coupled excitable elements, Circ. Res., vol. 47, pp. 454-466, Sep. 1980.
[29] A. T. Winfree, Electrical instability in cardiac muscle: phase singularities and rotors, J. Theor. Biol., vol. 138, pp. 353-405, Jun. 1989.
[30] A. M. Pertsov, J. M. Davidenko, R. Salomonsz, W. T. Baxter, and J. Jalife, Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle, Circ. Res., vol. 72, pp. 631-650, Mar. 1993.
[31] J. J. Fox, M. L. Riccio, F. Hua, E. Bodenschatz, and R. F. Gilmour, Jr., Spatiotemporal transition to conduction block in canine ventricle, Circ. Res., vol. 90, pp. 289-296, Feb. 2002.
[32] J. Jalife and O. Berenfeld, Molecular mechanisms and global dynamics of fibrillation: an integrative approach to the underlying basis of vortex-like reentry, J. Theor. Biol., vol. 230, pp. 475-487, Oct. 2004.
[33] A. G. Kleber and Y. Rudy, Basic mechanisms of cardiac impulse propagation and associated arrhythmias, Physiol. Rev., vol. 84, pp. 431-488, Apr. 2004.
[34] Z. Qu, H. S. Karagueuzian, A. Garfinkel, J. N. Weiss, Effects of Na+channel and cell coupling abnormalities on vulnerability to reentry: a World Academy of Science, Engineering and Technology 30 2009274simulation study, Am. J. Physiol., vol. 286, pp. H1310-H1321, Apr. 2004.
[35] P. Comtois, J. Kneller, and S. Nattel, Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry, Europace, vol. 7 (Suppl 2), pp. 10-20, Sep. 2005.
[36] J. N. Weiss, A. Karma, Y. Shiferaw, P. S. Chen, A. Garfinkel, and Z. Qu, From pulsus to pulseless: the saga of cardiac alternans, Circ. Res.,vol. 98, pp. 1244-1253, May 2006.
[37] S. W. Morgan, G. Plank, I. V. Biktasheva, and V. N. Biktashev, Low energy defibrillation in human cardiac tissue: a simulation study, Biophys. J., vol. 96, pp. 1364-1373, Feb. 2009.
[38] J. M. Davidenko, P. F. Kent, D. R. Chialvo, D. C. Michaels, and J. Jalife, Sustained vortex-like waves in normal isolated ventricular muscle, Proc. Natl. Acad. Sci. USA, vol. 87, pp. 8785-8789, Nov. 1990.
[39] J. M. Davidenko, A. V. Pertsov, R. Salomonsz, W. Baxter, and J. Jalife, Stationary and drifting spiral waves of excitation in isolated cardiac muscle, Nature, vol. 355, pp. 349-351, Jan. 1992.
[40] P. S. Chen, A. Garfinkel, J. N. Weiss, and H. S. Karagueuzian, Spirals, chaos, and new mechanisms of wave propagation, Pacing Clin. Electrophysiol., vol. 20, pp. 414-421, Feb. 1997.
[41] A. Garfinkel, P. S. Chen, D. O. Walter, H. S. Karagueuzian, B. Kogan, S. J. Evans, M. Karpoukhin, C. Hwang, T. Uchida, M. Gotoh, O. Nwasokwa, P. Sager, and J. N. Weiss, Quasiperiodicity and chaos in cardiac fibrillation, J. Clin. Invest., vol. 99, pp. 305-314, Jan. 1997.
[42] Y. H. Kim, A. Garfinkel, T. Ikeda, T. J. Wu, C. A. Athill, J. N. Weiss, H. S. Karagueuzian, and P. S. Chen, Spatiotemporal complexity of ventricular fibrillation revealed by tissue mass reduction in isolated swine right ventricle: further evidence for the quasiperiodic route to chaos hypothesis, J. Clin. Invest., vol. 100, pp. 2486-2500, Nov. 1997.
[43] R. A. Gray, A. M. Pertsov, and J. Jalife, Spatial and temporal organization during cardiac fibrillation, Nature, vol. 392, pp. 75-78, Mar. 1998.
[44] F. X. Witkowski, L. J. Leon, P. A. Penkoske, W. R. Giles, M. L. Spano, W. L. Ditto, and A. T. Winfree, Spatiotemporal evolution of ventricular fibrillation, Nature, vol. 392, pp. 78-82, Mar. 1998.
[45] R. F. Gilmour, Jr., Electrical restitution and ventricular fibrillation: negotiating a slippery slope, J. Cardiovasc. Electrophysiol., vol. 13, pp. 1150-1151, Nov. 2002.
[46] J. N. Weiss, Z. Qu, P. S. Chen, S. F. Lin, H. S. Karagueuzian, H. Hayashi, A. Garfinkel, and A. Karma, The dynamics of cardiac fibrillation, Circulation, vol. 112, pp. 1232-1240, Aug. 2005.
[47] A. Palmer, J. Brindley, and A. V. Holden, Initiation and stability of reentry in two coupled excitable fibers, Bull. Math. Biol., vol. 54, pp. 1039-1056, Nov. 1992.
[48] J. M. Rogers and A. D. McCulloch, A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE Trans. Biomed. Eng., vol. 41, pp. 743-757, Aug. 1994.
[49] J. M. Davidenko, R. Salomonsz, A. M. Pertsov, W. T. Baxter, and J. Jalife, Effects of pacing on stationary reentrant activity: theoretical and experimental study, Circ. Res., vol. 77, pp. 1166-1179, Dec. 1995.
[50] C. F. Starmer, D. N. Romashko, R. S. Reddy, Y. I. Zilberter, J. Starobin, A. O. Grant, and V. I. Krinsky, Proarrhythmic response to potassium channel blockade: numerical studies of polymorphic tachyarrhythmias, Circulation, vol. 92, pp. 595-605, Aug. 1995.
[51] P. S. Chen, P. D. Wolf, E. G. Dixon, N. D. Danieley, D. W. Frazier, W. M. Smith, and R. E. Ideker, Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs, Circ. Res., vol. 62, pp. 1191-1209, Jun. 1988.
[52] N. Shibata, P. S. Chen, E. G. Dixon, P. D. Wolf, N. D. Danieley, W. M. Smith, and R. E. Ideker, Influence of shock strength and timing on induction of ventricular arrhythmias in dogs, Am. J. Physiol., vol. 255, pp. H891-H901, Oct. 1988.
[53] D. W. Frazier, P. D. Wolf, J. M. Wharton, A. S. Tang, W. M. Smith, and R. E. Ideker, Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium, J. Clin. Invest., vol. 83, pp. 1039-1052, Mar. 1989.
[54] G. P. Walcott, S. B. Knisley, X. Zhou, J. C. Newton, and R. E. Ideker, On the mechanism of ventricular defibrillation, Pacing Clin. Electrophysiol., vol. 20, pp. 422-431, Feb. 1997.
[55] S. F. Noujaim, S. V. Pandit, O. Berenfeld, K. Vikstrom, M. Cerrone, S. Mironov, M. Zugermayr, A. N. Lopatin, and J. Jalife, Up-regulation of the inward rectifier K+ current (IK1) in the mouse heart accelerates and stabilizes rotors, J. Physiol., vol. 578, pp. 315-326, Jan. 2007.
[56] W. Guo, H. Li, B. London, and J. M. Nerbonne, Functional consequences of elimination of Ito,f and Ito,s: early afterdepolarizations, atrioventricular block, and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant-negative Kv4 D subunit, Circ. Res.,vol. 87, pp. 73-79, Jul. 2000.