
Abstract—Plasmodium vivax malaria differs from P. falciparum
malaria in that a person suffering from P. vivax infection can suffer 
relapses of the disease. This is due the parasite being able to remain 
dormant in the liver of the patients where it is able to re-infect the 
patient after a passage of time.  During this stage, the patient is 
classified as being in the dormant class. The model to describe the 
transmission of P. vivax malaria consists of a human population 
divided into four classes, the susceptible, the infected, the dormant 
and the recovered. The effect of a time delay on the transmission of 
this disease is studied. The time delay is the period in which the P.
vivax parasite develops inside the mosquito (vector) before the vector 
becomes infectious (i.e., pass on the infection). We analyze our 
model by using standard dynamic modeling method. Two stable 
equilibrium states, a disease free state E0 and an endemic state E1, are 
found to be possible.  It is found that the E0 state is stable when a 
newly defined basic reproduction number G is less than one.  If G is 
greater than one the endemic state E1 is stable. The conditions for the 
endemic equilibrium state E1 to be a stable spiral node are 
established. For realistic values of the parameters in the model, it is 
found that solutions in phase space are trajectories spiraling into the 
endemic state.  It is shown that the limit cycle and chaotic behaviors 
can only be achieved with unrealistic parameter values.   

Keywords—Equilibrium states, Hopf bifurcation, limit cycle 
behavior, local stability, Plasmodium Vivax, time delay.

I. INTRODUCTION

HE evolutional biology [1] of the parasite Plasmodium 
vivax determines to a great extent the mathematical model 
needed to describe the transmission cycle of the human 

disease caused by this parasite. After being bitten by an 
infected mosquito, sporizoites (one of the stages of the malaria 
parasite) are introduced into the blood stream of the human.  

These then move to the liver of the human.  Some of them 
transform themselves into merozoites, which then invade the 
blood cells and cause the illness.  The remaining sporizoites 
are transformed into hypnozoites which then lay dormant in 
the liver.  The relapses occur when some of the hypnozoites 
transform themselves into schizents and then into merozoites.   

These new merozoites then reinvade the blood and cause 
the illness again.  These relapses can occur up to three years 
after the initial infection.  Only a small number of the P. vivax 
merozoites remain in the blood between the relapse episodes. 
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The hypnozoite stage does not occur in the three other types 
of malaria, Plasmodium falciparum, Plasmodium malariae and 
Plasmodium ovale. 
      The absence of the hypnozoite stage in the malaria caused 
by the P. falciparum parasite makes the transmission models 
used to describe P. falciparum malaria invalid for describing 
the transmission of the malaria caused by the P. vivax 
parasite.  The reasons for P.  falciparum malaria to be studied 
more than P. vivax malaria are (1) most of the deaths due to 
malaria (2-3 million a year) occur in Africa [2] (2) 90% of the 
malaria cases in Africa is due to P. falciparum malaria and (3) 
P. falciparum malaria is a life threatening disease, whereas P 
.vivax malaria is not. It was commonly assumed that 
information about vivax could be extrapolated from the 
falciparum research.  This assumption was challenged at a 
recent conference convened by the Multilateral Initiative on 
Malaria [3].  The transmission of malaria is usually described 
by the Ross-MacDonald (RM) model [4].  However, this 
model is only suitable for the transmission of the P. 
falciparum malaria since it does not contain the possibility of 
relapses of the illness.  One of the present authors (IMT) has 
introduced a simple mathematical model [5] to describe the 
transmission of P. vivax malaria.  In the model, we included a 
dormant class in which there are no merozoites in the blood, 
only dormant hypnozoites in the liver.  A person can be re-
infected when the hypnozoites are re-activated.  

We wish to look at the model again. In the present state of 
concern for medical safety, there is no place for human 
experimentation to see what would happen if new therapies 
are adopted.   Mathematical modeling allows one to simulate 
what would occur. We introduce in Section 2, the 
modification of the model which would make it applicable to 
the transmission of P. vivax malaria   In Section 3, we analyze 
our model to find the conditions for the local stability of each 
equilibrium point. The numerical simulations confirm the 
local stability of the endemic equilibrium point. Conditions for 
Hopf bifurcation are found. We found that limit cycle 
behavior and chaotic behavior can occur for the unrealistic 
parameter values 
The implication of the insights obtained from the simulations 
is given. 
     It is estimated that about 50% of the malaria cases outside 
of Africa and 10% in Africa are due to P. vivax. Part of the 
urgency for doing research on P. vivax malaria is due to the 
fact that P. vivax malaria is becoming an emerging public 
health problem in many parts of the world where the 
percentage the cases due to  are due to P. vivax is increasing.
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II. TRANSMISSION MODEL
The mathematical modeling of the epidemiology of malaria 

(P. falciparum) was started by Ross [6] in 1911and improved 
on by MacDonald [7].  In the Ross model, an individual in the 
human population is classified as being in a non-infected or 
infected state.  This gives rise to what is known as a SIS 
(susceptible-infected-susceptible) model.  It has been 
suggested [7] that the human population should be divided 
into three states; non-infected, infected but without any acute 
clinical signs, infected with acute clinical sign, to better reflect 
the clinical status of the individual.  Others believe that the 
population should be further divided into susceptible, infected 
but not infectious and infected and infectious.  

Fig. 1 Flow chart of the model 

In our model for the transmission of P. vivax, we divide the 
host (human) population into susceptible ),S( h infected )I( h ,

dormant )D( h and recovered )R( h classes. The last 
category, the recovered are susceptible to further infections 
and so they reenter into the hS class. In Figure 1, we show the 
flow chart describing what is occurring in the human 
population.  As we see, NT humans are entering into the 
susceptible class through birth and h1)r-(1  , h3Dr  and 

(t)hRr6  through the recovery of members of the infected 
and dormant categories (with  being the birth rate; NT, the 
total human population; r1, the recovery rate of a person in the 
infected category; r3, the recovery rate of a member of the 
dormant population and  being the percentage of infected 
people in whom some hypnozoites remain dormant in the 
liver).   (1- ) is the percentage of infected humans who 
recover and become susceptible again.  The time rate of 
change of the number of susceptible members is equal to the 
number entering minus the number leaving.  This gives us the 
following differential equation for the time rate of change of 
the susceptible population; 

h hh T 3 1

'
v hh hh h 4

d S (t) N r D (t) (1 )r I (t)
dt

I (t)S (t) S (t) r R (t)
                                (1a) 

    Applying similar considerations to the other population 
classes, we obtain

'
h v hhh 1 h

h h2 5

d I (t) I (t)S (t) (r )I (t)
dt
                r D (t) r I (t),

                                          

 (1b)          

(t)D)r(r(t)Ir(t)D
dt
d

hh32h1h

 (1c)                   
and

h h h5 4 h
d R (t) r I (t) (r )R (t)
dt

                           (1d) 

where the parameters in the above equations are defined as 
    is the birth rate of human population,  
h  is the death rate of human population,  

NT  is the total number of human population,  
   is the percentage of infected human in whom  

 some hypnozoites remain dormant in the liver,  
r1    is the rate at which a person leaves the infected 

class by recovering or by entering into the dormant 
class,

r2   is the rate at which the dormant human relapses 
back to the infected human, 

r3     is the recovery rate of the dormant human, 
r4   is the rate at which the recovered human relapses 

back to the susceptible human, and 
r5   is the rate at which the infected human recovers, 

since P. vivax infection is non lethal, the death 
rates will be the same for all human classes and we 
will have hRhDhIhSTN

Equation (1a) also contains the term (t)S(t)I hv
'
h .This

term represents the lost of the susceptible person due to a bite 
of an infected mosquito.  ’h is the rate at which the P. vivax 
parasite is transmitted from the mosquito to the human and is 
given by [8]                                                     

           

mTN
hbh'           (2) 

where b is the specie-dependent biting rate of the mosquitoes; 
m is the population of other animals that the mosquitoes can 
feed on and h is the probability the parasite passed on by the 
mosquito will continue to thrive in the human.  h depends 
partly on the immune response of the host to the infection.  

vI  is the number of infected mosquitoes.  The dynamics of 
the mosquito’s populations are given by   

(t)S(t)I(t)SA(t)S
dt
d

vvhv
'
vv                               (3a) 

(t)I)e(tI)(tS(t)I
dt
d

vvv-
hv

'
vv                  (3b) 

Here, we are interested in the time rate of change of the 
infectious vector at time t and   is the number of days for the 
infected vector to become infectious. We consider the number 
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of susceptible vector who bit an infected human at time t - 
not at time t. Fraction of the infected mosquito would have 
died between the time t and t - .

 At equilibrium, the total number of female mosquitoes will 
be A/ v. A is the rate at which the mosquitoes are recruited 
and v is the death rate for the mosquitoes.  It should be noted 
that a mosquito can not be infected through a bite of a human 
belonging to the dormant class.  ’v is the rate at which the 
mosquitoes become infected with the Plasmodium Vivax 
parasite once the mosquito has bitten an infected human. ’v is 
defined by [8]  

mTN
b' v

v

where b is the specie-dependent biting rate of the mosquitoes; 
m is the population of other animals that the mosquitoes can 

 feed on and v is the probability the parasite passed to the 
mosquito by biting human. We also assume vIvSVN .
The working equations of the model are obtained by dividing 
(1a), (1b), (1c) and (1d) by NT and (3a) and (3b) by A/ v.
This would give us six equations expressed in terms of the 
renormalized variables;

Thh /NSS , Thh /NII , Thh /NR R ,

)/(A/SS vvv and )/(A/II vvv .
The conditions Sh + Ih+ Dh + Rh = 1 and Sv + Iv = 1, leads to 

only four of these equations being needed.  We pick the four 
equations to be 

(t))D-(t)I-(t)S-(1r
(t)S-(t)(t)SI-

(t)I)r-(1(t)Dr(t)S
dt
d

hhh4

hhhvh

h1h3hh

                                                                                          (4a)

(t)Ir(t)Dr(t))I(r-(t)(t)SI(t)I
dt
d

h5h2hh1hvhh

(t)))Dr(r(t)Ir(t)D
dt
d

hh32h1h

                                                                                         (4c) 
and

(t)I)e-I(t))-(tI-(1(t)I
dt
d

vv
v-

vvv          (4d) 

where the new transmission rates are h = ’h(A/ v) and v =
’vNT.   The domain of solutions is

1}IS01,RDIS0
Iv),S,R,D,I,(S{

vvhhhh

vhhhh

In (4d), we have replaced )-I(t by I(t) because the density 
of infectious human is not anticipated to vary much over the 
period  which is much less than the life expectancy of 
human. 

III. ANALYSIS OF THE MATHEMATICAL MODEL

A. Analytical Results
   To find the equilibrium points, we set the RHS's of (4a)  
to (4d) to zero. Doing this, we get   

i) the disease free equilibrium state EO = (1, 0, 0, 0) 
ii) the endemic equilibrium state   

E1 = )I,D,I,(S *
v

*
h

*
h

*
h

where

4hvh

hh43h1hh*
h rI

)ID(1rrD)(1rI
S ,

)I(1
Ie

I
vv

vvv*
h ,

32h

1h*
h rr

rI
D ,

e

Ge1
I

v
0

v
*
v

                                                                                          (5)
with  

))rr(r)r)r((1rr(

)rr(
G

5323211235h
2
hv

32hvh
0

4h

532h
132hvh r

rrr
rrr

32hvh rr

53211235 rrrrr
       (6) 
  We observe that endemic equilibrium point exists when 

1Ge 0v  or  must lie in the range v)/0(lnG0 .

Let G = 0v Ge then G is the basic reproduction number. It 
represents the number of secondary infections resulting from a 
primary infection.  The local stability of each equilibrium 
point is determined by the sign of all eigenvalues.  If all 
eigenvalues have negative real parts, then that equilibrium 
point is locally stable. Eigenvalues for each equilibrium point 
are obtained by setting         

0I)det(J                                            (7)
where J is the gradient matrix evaluated at the equilibrium 
point. 

The correspondent eigenvalues for each equilibrium point 
are found by solving the characteristic equation; which is in 
the form

0),(),( veBA                                    (8) 
where

)()()()(),( 01
2

2
3

3
4 uuuuA         (9)

)()()()(),(B 01
2

2
3

3 vvvv        (10) 
and

01230123 ,,,,,,, vvvvuuuu  are functions of the time delay 
( ).

                                                                          

                                                                                        (4b)

World Academy of Science, Engineering and Technology
International Journal of Bioengineering and Life Sciences

 Vol:1, No:5, 2007 

60International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 B
io

en
gi

ne
er

in
g 

an
d 

L
if

e 
Sc

ie
nc

es
 V

ol
:1

, N
o:

5,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

02
.p

df



For 0 , the correspondent eigenvalues for each 
equilibrium point are found by solving the characteristic 
equation; which is in the form   

)0()0()0()0( 01
2

2
3

3
4 uuuu .

In this case, the coefficients )0(),0(),0(),0( 0123 uuuu  are 
constants. We let 

)0(
),0(
),0(
),0(

00

11

22

33

us
us
us
us

By using Routh-Hurwitz criteria [9], each equilibrium point 
is locally stable if the following conditions are satisfied; 

              i) 03s ,                                 (11) 

             ii) 01s ,                                        (12) 

             iii) 0s0 ,                                         (13) 

            iv) 0
2
3

2
1123 ssssss                        (14) 

    We check the above conditions by using MATHEMATICA 
(Wolfram Research, Champaign, IL), then we found that 

0E is locally stable for 1G0  and 1E is locally stable 
for 1G0 .

    B. Bifurcation Conditions for the Endemic State. 

The characteristic equations obtained by Ruan and Wei [10] 
and by Klan and Greenhalgh [11] for their models are of form 

3 + a 2 + b  + c = de-          ,             (15) 

while the characteristic equation studied by Tam [12] has the 
form 

3 + a 2 + (b + ce- )  + d = fe-                 (16) 

The constants (a, b, c, d, f) in (15) and (16) are defined in 
the respective references.  The important thing to note is that 
these constant do not depend on .

To determine the conditions for Hopf bifurcation, we apply 
the techniques used in [10] and [11].  Substituting  = c + di 
(where c and d are real numbers and may be functions of )
into (8) and separating the real and imaginary parts, we obtain 

0))()()()()(3)()()(2

)()()()(sin()())()()(3

)()()()()()()(

)()()()(cos()()()()(3

)()()()()()(

)()()()()()(6)(

3
3

3
2

2

13
2

3
3

2
2

2
2

0

13
2

3
3

2
2

2
2

10
4224

vdvdcvdc

vddevdc

vcvdvcv

vcdeudc

ucuduc

ucuddcc

c

c
   (17) 

and

0)()()(3)()()()(

)()()()()()()(sin(

)()()()()(3)()()(2

)()()()(cos(

)()()()()(3

)()()(2)()()(4)()(4

3
2

3
3

2
2

2
2

10
)(

3
3

3
2

2

1
)(

3
3

3
2

21
43

vdcvcvd

vcvcvde

vdvdcvdc

vdde

ududc

udcudcdc

c

c
    (18) 

      We now let c . At this point, 0)( cc .We denote 

)( cd  as d
~

, (17) and (18) become  

)
~

sin())(
~

)((
~

)
~

cos())(
~

)((

)(
~

)(
~

3
2

1

2
2

0

2
2

0
4

ccc

ccc

cc

dvdvd

dvdv

udud

                (19) 

)
~

sin())(
~

)((

)
~

cos())(
~

)((
~

)(
~

2
2

0

3
2

1

3
3

ccc

ccc

c

dvdv

dvdvd

ud

                 (20) 

Squaring (19) and (20) and adding them together, we obtain 
0)()()()()( 01

2
2

3
3

4
cccc hhhhf  (21) 

where 2~
d  and 

2
0

2
00

20
2

1201

31
2

2
2

202

2
3

2
323

)()()(

)()(2)()()(2()(

)()(2)()()(2)(

)()()(2)(

ccc

cccccc

cccccc

cccc

vuh

vvvuuh

vvvuuh

vuuh

         (22) 

  We note that )(),(),(),( 0123 cccc hhhh  are real. Critical 
point value c  is always determined from the requirement 
that 0)( cc . In the technique used here, the critical point is 
determined from the condition that at least one root of (21) be 
real and positive, otherwise 0d  ( 0  is the root of the 
equation) would be imaginary. The existence of an imaginary 
part of the eigenvalue depends on whether equation (21) has a 
positive real root. 
     We use MATHEMATICA (Wolfram Research, 
Champaign, IL) to check whether equation (21) has a positive 
real root. 

C.   Numerical Results
C.1 Realistic Parameter Values 

    In this section, the numerical simulations of the endemic 
equilibrium state are shown in each case. The parameters are 
determined by real life observations. h 0.0000391-1 day 
corresponds to the real life expectancy of  70 years for human.  

14/11r
-1 day corresponds to the 14 days of a person leaves 

the infected class by recovering or by entering into the 
dormant class. )3*365/(12r

-1day corresponds to the 3 
years of the relapse of the human. 25/13r

-1day 
corresponds to the 25 days of the recovery of the dormant 
human, )10*365/(14r

-1day satisfy 10 years of the 
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recovered human relapses back to the susceptible human. 
3/15r

-1day satisfy 3 days of the recovery of the infected 
human. v 0.04-1 day corresponds to the mean life 
expectancy of 25 days for vector. vh ,,  equal 0.75, 0.2, 
0.15, respectively. These values are arbitrarily constants. 
Case 1; 0

2a)

2b)
Fig. 2  2a) Time series of hh D,I and vI  when there is no  

time delay and 0G = 1.85. 
          2b) Stable spiral trajectories and the parameters are  

similar to fig.2a).  

The period of oscillation is approximated 5.5 years. As we 
see, the trajectories in the hh ID and hv II phase planes 
spiral into the endemic equilibrium state. There is not clearly 
evident for the trajectory hv DI phase plane, but this phase 
plane also spirals in.
Case 2; 0

In this case, must be in the range v)/0(lnG0 .
According to our parameters, must belong to this interval: 
(0, 15.5). We choose = 10. 

                                    3a) 
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3b)

Fig. 3  3a) Time series of hh D,I and vI  when = 10.
3b) Stable spiral trajectories and the parameters are similar to 
fig.3a).

The period of oscillation is 10 years. As we see, the 
trajectories in the hh ID and hv II phase planes spiral 
into the endemic equilibrium state. There is not clearly evident 
for the trajectory hv DI phase plane, but this phase plane 
also spirals in. We observe that the period of oscillations in 
this case is higher than when there is no time delay. 
    The time delay ( ) must be in the range v)/0(lnG0 .
If  is not in this interval then the endemic equilibrium point 
will be negative which is meaningless.  

      B.2 Unrealistic Parameter Value 
To determine whether it is possible that there are 

parameter values such that a Hopf bifurcation is possible, we 
have chosen a set of parameter values: h 0.0000391-1 day, 

14/11r
-1 day, )5*365/(12r

-1day, 30/13r
-1day, 

)15*365/(14r
-1day , 3/15r

-1day, v 0.04-1 day, 
75.0 , 18 , 25,25 vh . The numerical solution is 

shown in fig.4. 

Fig. 4  Behavior of our model when limit cycle occurs. 

       Next, we simulate the another set of parameter values: 
h 0.0000391-1 day, 14/11r

-1 day, )5*365/(12r
-1day, 

30/13r
-1day, )15*365/(14r

-1day , 3/15r
-1day, 
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v 0.04-1 day, 75.0 , 18 , 26,26 vh . The 
numerical solution is shown in fig.5. 

Fig. 5 Behavior of our model when chaotic behavior occurs. 

 Consider the parameters values in fig.4 and fig.5, the 
parameter values in fig.4 and fig.5 gives G = 18,829 and 
20,365, respectively. This means than one primary case need 
to produce 18,829 and 20,365 secondary cases, respectively.  
These numbers are too much for a primary case can produce. 
This is impossible in the real life. 

IV. CONCLUSION
    In this study, we analyze the mathematical model of 
P.Vivax. The time delay is included to the model. The 
condition for local stability of endemic equilibrium point is 
established. The numerical simulations are shown to confirm 
these results. We show the conditions for Hopf bifurcation. 
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The numerical simulations show that limit cycle and chaotic 
behaviors can occur only for unrealistic parameter values. 
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