Search results for: Mean carbon dioxide pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2149

Search results for: Mean carbon dioxide pressure

739 Robust Design of Electroosmosis Driven Self-Circulating Micromixer for Biological Applications

Authors: Bahram Talebjedi, Emily Earl, Mina Hoorfar

Abstract:

One of the issues that arises with microscale lab-on-a-chip technology is that the laminar flow within the microchannels limits the mixing of fluids. To combat this, micromixers have been introduced as a means to try and incorporate turbulence into the flow to better aid the mixing process. This study presents an electroosmotic micromixer that balances vortex generation and degeneration with the inlet flow velocity to greatly increase the mixing efficiency. A comprehensive parametric study was performed to evaluate the role of the relevant parameters on the mixing efficiency. It was observed that the suggested micromixer is perfectly suited for biological applications due to its low pressure drop (below 10 Pa) and low shear rate. The proposed micromixer with optimized working parameters is able to attain a mixing efficiency of 95% in a span of 0.5 seconds using a frequency of 10 Hz, a voltage of 0.7 V, and an inlet velocity of 0.366 mm/s.

Keywords: Microfluidics, active mixer, pulsed AC electroosmosis flow, micromixer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477
738 Scale, Technique and Composition Effects of CO2 Emissions under Trade Liberalization of EGS: A CGE Evaluation for Argentina

Authors: M. Priscila Ramos, Omar O. Chisari, Juan Pablo Vila Martínez

Abstract:

Current literature about trade liberalization of environmental goods and services (EGS) raises doubts about the extent of the triple win-win situation for trade, development and the environment. However, much of this literature does not consider the possibility that this agreement carries technological transmissions, either through trade or foreign direct investment. This paper presents a computable general equilibrium model calibrated for Argentina, where there are alternative technologies (one dirty and one clean according to carbon emissions) to produce the same goods. In this context, the trade liberalization of EGS allows to increase GDP, trade, reduce unemployment and improve the households welfare. However, the capital mobility appears as the key assumption to jointly reach the environmental target, when the positive scale effect generated by the increase in trade is offset by the change in the composition of production (composition and technical effects by the use of the clean alternative technology) and of consumption (composition effect by substitution of relatively lesspolluting imported goods).

Keywords: CGE modeling, CO2 emissions, composition effect, scale effect, technique effect, trade liberalization of EGS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
737 Modeling Erosion Control in Oil Production Wells

Authors: Kenneth I.Eshiet, Yong Sheng

Abstract:

The sand production problem has led researchers into making various attempts to understand the phenomenon. The generally accepted concept is that the occurrence of sanding is due to the in-situ stress conditions and the induced changes in stress that results in the failure of the reservoir sandstone during hydrocarbon production from wellbores. By using a hypothetical cased (perforated) well, an approach to the problem is presented here by using Finite Element numerical modelling techniques. In addition to the examination of the erosion problem, the influence of certain key parameters is studied in order to ascertain their effect on the failure and subsequent erosion process. The major variables investigated include: drawdown, perforation depth, and the erosion criterion. Also included is the determination of the optimal mud pressure for given operational and reservoir conditions. The improved understanding between parameters enables the choice of optimal values to minimize sanding during oil production.

Keywords: Equivalent Plastic Strain, Erosion, Hydrocarbon Production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
736 Nutrients Removal Control via an Intermittently Aerated Membrane Bioreactor

Authors: Junior B. N. Adohinzin, Ling Xu

Abstract:

Nitrogen is among the main nutrients encouraging the growth of organic matter and algae which cause eutrophication in water bodies. Therefore, its removal from wastewater has become a worldwide emerging concern. In this research, an innovative Membrane Bioreactor (MBR) system named “moving bed membrane bioreactor (MBMBR)” was developed and investigated under intermittently-aerated mode for simultaneous removal of organic carbon and nitrogen.

Results indicated that the variation of the intermittently aerated duration did not have an apparent impact on COD and NH4+–N removal rate, yielding the effluent with average COD and NH4+–N removal efficiency of more than 92 and 91% respectively. However, in the intermittently aerated cycle of (continuously aeration/0s mix), (aeration 90s/mix 90s) and (aeration 90s/mix 180s); the average TN removal efficiency was 67.6%, 69.5% and 87.8% respectively. At the same time, their nitrite accumulation rate was 4.5%, 49.1% and 79.4% respectively. These results indicate that the intermittently aerated mode is an efficient way to controlling the nitrification to stop at nitrition; and also the length of anoxic duration is a key factor in improving TN removal.

Keywords: Membrane bioreactor (MBR), Moving bed biofilm reactor (MBBR), Nutrients removal, Simultaneous nitrification and denitrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
735 Thrust Vectoring Control of Supersonic Flow Through an Orifice Injector

Authors: Ibrahim Mnafeg, Azgal Abichou, Lotfi Beji

Abstract:

Traditional mechanical control systems in thrust vectoring are efficient in rocket thrust guidance but their costs and their weights are excessive. The fluidic injection in the nozzle divergent constitutes an alternative procedure to achieve the goal. In this paper, we present a 3D analytical model for fluidic injection in a supersonic nozzle integrating an orifice. The fluidic vectoring uses a sonic secondary injection in the divergent. As a result, the flow and interaction between the main and secondary jet has built in order to express the pressure fields from which the forces and thrust vectoring are deduced. Under various separation criteria, the present analytical model results are compared with the existing numerical and experimental data from the literature.

Keywords: Flow separation, Fluidic thrust vectoring, Nozzle, Secondary jet, Shock wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
734 Using Divergent Nozzle with Aerodynamic Lens to Focus Nanoparticles

Authors: Hasan Jumaah Mrayeh, Fue-Sang Lien

Abstract:

ANSYS Fluent will be used to simulate Computational Fluid Dynamics (CFD) for an efficient lens and nozzle design which will be explained in this paper. We have designed and characterized an aerodynamic lens and a divergent nozzle for focusing flow that transmits sub 25 nm particles through the aerodynamic lens. The design of the lens and nozzle has been improved using CFD for particle trajectories. We obtained a case for calculating nanoparticles (25 nm) flowing through the aerodynamic lens and divergent nozzle. Nanoparticles are transported by air, which is pumped into the aerodynamic lens through the nozzle at 1 atmospheric pressure. We have also developed a computational methodology that can determine the exact focus characteristics of aerodynamic lens systems. Particle trajectories were traced using the Lagrange approach. The simulation shows the ability of the aerodynamic lens to focus on 25 nm particles after using a divergent nozzle.

Keywords: Aerodynamic lens AL, divergent nozzle DN, ANSYS Fluent, Lagrange approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
733 Selection of Pichia kudriavzevii Strain for the Production of Single-Cell Protein from Cassava Processing Waste

Authors: Phakamas Rachamontree, Theerawut Phusantisampan, Natthakorn Woravutthikul, Peerapong Pornwongthong, Malinee Sriariyanun

Abstract:

A total of 115 yeast strains isolated from local cassava processing wastes were measured for crude protein content. Among these strains, the strain MSY-2 possessed the highest protein concentration (>3.5 mg protein/mL). By using molecular identification tools, it was identified to be a strain of Pichia kudriavzevii based on similarity of D1/D2 domain of 26S rDNA region. In this study, to optimize the protein production by MSY-2 strain, Response Surface Methodology (RSM) was applied. The tested parameters were the carbon content, nitrogen content, and incubation time. Here, the value of regression coefficient (R2) = 0.7194 could be explained by the model which is high to support the significance of the model. Under the optimal condition, the protein content was produced up to 3.77 g per L of the culture and MSY-2 strain contains 66.8 g protein per 100 g of cell dry weight. These results revealed the plausibility of applying the novel strain of yeast in single-cell protein production.

Keywords: Single cell protein, response surface methodology, yeast, cassava processing waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661
732 A High Thermal Dissipation Performance Polyethyleneterephthalate Heat Pipe

Authors: Chih-Chieh Chen, Chih-Hao Chen, Guan-Wei Wu, Sih-Li Chen

Abstract:

A high thermal dissipation performance polyethylene terephthalate heat pipe has been fabricated and tested in this research. Polyethylene terephthalate (PET) is used as the container material instead of copper. Copper mesh and methanol are sealed in the middle of two PET films as the wick structure and working fluid. Although the thermal conductivity of PET (0.15-0.24 W/m·K) is much smaller than copper (401 W/m·K), the experiment results reveal that the PET heat pipe can reach a minimum thermal resistance of 0.146 (oC/W) and maximum effective thermal conductivity of 18,310 (W/m·K) with 36.9 vol% at 26 W input power. However, when the input power is larger than 30 W, the laminated PET will debond due to the high vapor pressure of methanol.

Keywords: PET, heat pipe, thermal resistance, effective thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2967
731 Design and Analysis of Piping System with Supports Using CAESAR-II

Authors: M. Jamuna Rani, K. Ramanathan

Abstract:

A steam power plant is housed with various types of equipments like boiler, turbine, heat exchanger etc. These equipments are mainly connected with piping systems. Such a piping layout design depends mainly on stress analysis and flexibility. It will vary with respect to pipe geometrical properties, pressure, temperature, and supports. The present paper is to analyze the presence and effect of hangers and expansion joints in the piping layout/routing using CAESAR-II software. Main aim of piping stress analysis is to provide adequate flexibility for absorbing thermal expansion, code compliance for stresses and displacement incurred in piping system. The design is said to be safe if all these are in allowable range as per code. In this study, a sample problem is considered for analysis as per power piping ASME B31.1 code and the results thus obtained are compared.

Keywords: ASTM B31.1, hanger, expansion joint, CAESAR-II.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5111
730 Experimental Investigation on Activated Carbon Based Cryosorption Pump

Authors: K. B. Vinay, K. G. Vismay, S. Kasturirengan, G. A. Vivek

Abstract:

Cryosorption pumps are considered safe, quiet, and ultra-high vacuum production pumps which have their application from Semiconductor industries to ITER [International Thermonuclear Experimental Reactor] units. The principle of physisorption of gases over highly porous materials like activated charcoal at cryogenic temperatures (below -1500°C) is involved in determining the pumping speed of gases like Helium, Hydrogen, Argon, and Nitrogen. This paper aims at providing detailed overview of development of Cryosorption pump and characterization of different activated charcoal materials that optimizes the performance of the pump. Different grades of charcoal were tested in order to determine the pumping speed of the pump and were compared with commercially available Varian cryopanel. The results for bare panel, bare panel with adhesive, cryopanel with pellets, and cryopanel with granules were obtained and compared. The comparison showed that cryopanel adhered with small granules gave better pumping speeds than large sized pellets.

Keywords: Adhesive, cryopanel, granules, pellets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
729 Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells

Authors: Mohanapriya Subramanian, V. Raj

Abstract:

Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor as well as a separator between electrodes. Increasing concern over environmental protection, biopolymers gain tremendous interest owing to their eco-friendly bio-degradable nature. Pectin is a natural anionic polysaccharide which plays an essential part in regulating mechanical behavior of plant cell wall and it is extracted from outer cells of most of the plants. The aim of this study is to develop and demonstrate pectin based polymer composite membranes as methanol impermeable polymer electrolyte membranes for DMFCs. Pectin based nanocomposites membranes are prepared by solution-casting technique wherein pectin is blended with chitosan followed by the addition of optimal amount of sulphonic acid modified Titanium dioxide nanoparticle (S-TiO2). Nanocomposite membranes are characterized by Fourier Transform-Infra Red spectroscopy, Scanning electron microscopy, and Energy dispersive spectroscopy analyses. Proton conductivity and methanol permeability are determined into order to evaluate their suitability for DMFC application. Pectin-chitosan blends endow with a flexible polymeric network which is appropriate to disperse rigid S-TiO2 nanoparticles. Resulting nanocomposite membranes possess adequate thermo-mechanical stabilities as well as high charge-density per unit volume. Pectin-chitosan natural polymeric nanocomposite comprising optimal S-TiO2 exhibits good electrochemical selectivity and therefore desirable for DMFC application.

Keywords: Biopolymers, fuel cells, nanocomposite, methanol crossover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
728 Optimal Distribution of Lift Gas in Gas Lifted Oil Field Using MPC and Unscented Kalman Filter

Authors: Roshan Sharma, Bjørn Glemmestad

Abstract:

In gas lifted oil fields, the lift gas should be distributed optimally among the wells which share gas from a common source to maximize total oil production. One of the objectives of the paper is to show that a linear MPC consisting of a control objective and an economic objective can be used both as an optimizer and a controller for gas lifted systems. The MPC is based on linearized model of the oil field developed from first principles modeling. Simulation results show that the total oil production is increased by 3.4%. Difficulties in accurately measuring the bottom hole pressure using sensors in harsh operating conditions can be resolved by using an Unscented Kalman Filter (UKF) for estimation. In oil fields where input disturbance (total supply of gas) is not measured, UKF can also be used for disturbance estimation. Increased total oil production due to optimization leads to increased profit.

Keywords: gas lift, MPC, oil production, optimization, Unscented Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
727 Comparison of the Garden City Conceptand Green Belt Concept in Major Asian and Oceanic Cities

Authors: Kayoko Yamamoto

Abstract:

The purpose of this study is to review representative cases of green space development in order to compare the Garden City concept and Green Belt concept as applied and to examine its direction in major Asian and Oceanic cities. The results of previous studies and this study show that there are two major directions in such green-oriented city planning. One direction is toward Multi-Regional Development, and the other focuses on an Environmentally Symbiotic City based on the Garden City concept. In large cities and the suburbs where extremely strong pressure to urbanize makes it impossible to keep Green Belts, it is essential to strictly control land use and adopt the Garden City concept to conserve the urban environment.

Keywords: Garden City, Green Belt, Green City, Green SpaceDevelopment, Major Asian and Oceanic Cities

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4792
726 Study of Stress Wave Propagation with NHDMOC

Authors: G.Y. Zhang , M.L. Xu, R.Q. Zhang, W.H. Tang

Abstract:

MOC (method of cell) is a new method of investigating wave propagating in material with periodic microstructure, and can reflect the effect of microstructure. Wave propagation in periodically laminated medium consisting of linearly elastic layers can be treated as a special application of this method. In this paper, it was used to simulate the dynamic response of carbon-phenolic to impulsive loading under certain boundary conditions. From the comparison between the results obtained from this method and the exact results based on propagator matrix theory, excellent agreement is achieved. Conclusion can be made that the oscillation periodicity is decided by the thickness of sub-cells. In the end, the NHDMOC method, which permits studying stress wave propagation with one dimensional strain, was applied to study the one-dimensional stress wave propagation. In this paper, the ZWT nonlinear visco-elastic constitutive relationship with 7 parameters, NHDMOC, and corresponding equations were deduced. The equations were verified, comparing the elastic stress wave propagation in SHPB with, respectively, the elastic and the visco-elastic bar. Finally the dispersion and attenuation of stress wave in SHPB with visco-elastic bar was studied.

Keywords: MOC, NHDMOC, visco-elastic, wave propagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
725 Combustion, Emission and Performance Characteristics of a Light Duty Diesel Engine Fuelled with Methanol Diesel Blends

Authors: Mishra Chinmaya, Pal Anuj, Tomar Vishvendra Singh, Kumar Naveen

Abstract:

Combustion, emission and performance characterization of a single cylinder diesel engine using methanol diesel blends was carried out. The blends were 5% (v/v) methanol in diesel (MD05) and 10% (v/v) methanol in diesel (MD10). The problem of solubility of methanol and diesel was addressed by an agitator placed inside the fuel tank to prevent phase separation. The results indicated that total combustion duration was reduced by15.8% for MD05 and 31.27% for MD10compared to the baseline data. Ignition delay was increased with increasing methanol volume fraction in the test fuel. Total cyclic heat release was reduced by 1.5% for MD05 and 6.7% for MD10 as compared to diesel baseline. Emissions of carbon monoxide, hydrocarbons along with smoke were reduced and that of nitrogen oxides were increased with rising methanol contents in the test fuel. Full load brake thermal efficiency was marginally reduced with increased methanol composition in the blend.

Keywords: Combustion, diesel engine, emission, methanol, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3235
724 Variability of Soil Strength Parameters and its Effect on the Slope Stability of the Želazny Most Tailing Dam

Authors: Stella A. Arnaouti, Demos C. Angelides, Theodoros N. Chatzigogos, Witold M. Pytel

Abstract:

The Želazny Most tailing pond is one of the largest facilities worldwide for waste disposal from the copper mines located in South-West Poland. A potential failure of the dam would allow more than 10 million cubic meters of contaminated slurry to flow to the valley, causing immense environmental problems to the surrounding area. Thus, the determination of the strength properties of the dam's soils and their variability is of utmost importance. An extensive site investigation consisting of more than 480 cone penetration tests (CPTs) with or without pore water pressure measurements were conducted within a period of 13 years to study the mechanical properties of the tailings body. The present work investigates the point variability of the soil strength parameters (effective friction angle

Keywords: Soil strength variability, friction angle spatial variability, Želazny Most tailing dam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4155
723 Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

Authors: Wenjing Ding, Weiwei Shan, Zijuan, Wang, Chao He

Abstract:

Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is ±1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger.

Keywords: Liquid nitrogen spray, temperature regulating system, heat exchanger, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
722 Extractive Fermentation of Ethanol Using Vacuum Fractionation Technique

Authors: Weeraya Samnuknit, Apichat Boontawan

Abstract:

A vacuum fractionation technique was introduced to remove ethanol from fermentation broth. The effect of initial glucose and ethanol concentrations were investigated for specific productivity. The inhibitory ethanol concentration was observed at 100 g/L. In order to increase the fermentation performance, the ethanol product was removed as soon as it is produced. The broth was boiled at 35oC by reducing the pressure to 65 mBar. The ethanol/water vapor was fractionated for up to 90 wt% before leaving the column. Ethanol concentration in the broth was kept lower than 25 g/L, thus minimized the product inhibition effect to the yeast cells. For batch extractive fermentation, a high substrate utilization rate was obtained at 26.6 g/L.h and most of glucose was consumed within 21 h. For repeated-batch extractive fermentation, addition of glucose was carried out up to 9 times and ethanol was produced more than 8-fold higher than batch fermentation.

Keywords: Ethanol, Extractive fermentation, Product inhibition, Vacuum fractionation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3777
721 Retrofitting of Beam-Column Joint Using CFRP and Steel Plate

Authors: N. H. Hamid, N. D. Hadi, K. D. Ghani

Abstract:

This paper presents the retrofitting of beam-column joint using CFRP (Carbon Fiber Reinforced Polymer) and steel plate. This specimen was tested until failure up to 1.0% drift. This joint suffered severe damages and diagonal cracks at upper crack at upper column before retrofitted. CFRP were wrapped at corbel, bottom and top of the column. Steel plates with bonding were attached to the two beams and the jointing system. This retrofitted specimen is tested again under lateral cyclic loading up 1.75% drift. Visual observations show that the cracks started at joint when 0.5% drift applied at top of column. Damage of retrofitted beam-column joint occurred inside the CFRP and it cannot be seen from outside. Analysis of elastic stiffness, lateral strength, ductility, hysteresis loops and equivalent viscous damping shows that these values are higher than before retrofitting. Therefore, it is recommended to use this type of retrofitting method for beam-column joint with corbel which suffers severe damage after the earthquake.

Keywords: Beam-Column joint, ductility, stiffness, retrofitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5952
720 Phytoremediation Rates of Water Hyacinth in an Aquaculture Effluent Hydroponic System

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

Conventional wastewater treatment plants of activated carbon, electrodialysis, ion exchange, reverse osmosis etc. are expensive to install, operate and maintain especially in developing countries; therefore, the use of aquatic macrophytes for wastewater purification is a viable alternative. On the first day of experimentation, approximately 100g of water hyacinth was introduced into the hydroponic units in four replicates. The water quality parameters measured were total suspended solids (TSS), pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH4+-N), nitrite-nitrogen (NO2--N), nitrate-nitrogen (NO3--N), phosphate–phosphorus (PO43--P), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 438.2 g, 600.7 g, 688.2 g and 725.7 g. Water hyacinth was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 1.9% to 14.7%, EC from 49.8% to 97.0%, TDS from 50.4% to 97.6%, TSS from 34.0% to 78.3%, NH4+-N from 38.9% to 85.2%, NO2--N from 0% to 84.6%, NO3--N from 63.2% to 98.8% and PO43--P from 10% to 88.0%. Paired sample t-test shows that at 95% confidence level, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests that the use of water hyacinth is valuable in the design and operation of aquaculture effluent treatment and should therefore be adopted by environmental and wastewater managers.

Keywords: Aquaculture effluent, phytoremediation, pollutant, water hyacinth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
719 Difference of Properties on Surface Leakage and Discharge Currents of Porcelain Insulator Material

Authors: Waluyo, Ngapuli I. Sinisuka, Suwarno, Maman A. Djauhari

Abstract:

This paper presents the experimental results of comparison between leakage currents and discharge currents. The leakage currents were obtained on polluted porcelain insulator. Whereas, the discharge currents were obtained on lightly artificial polluted porcelain specimen. The conducted measurements were leakage current or discharge current and applied voltage. The insulator or specimen was in a hermetically sealed chamber, and the current waveforms were analyzed using FFT. The result indicated that the leakage current (LC) on low RH condition the fifth harmonic would be visible, and followed by the seventh harmonic. The insulator had capacitive property. Otherwise, on 99% relative humidity, the fifth harmonic would also be visible, and the phase angle reached up to 12.2 degree. Whereas, on discharge current, the third harmonic would be visible, and followed by fifth harmonic. The third harmonic would increase as pressure reduced. On this condition, the specimen had a non-linear characteristics

Keywords: leakage current, discharge current, third harmonic, fifth harmonic, porcelain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
718 Stack Ventilation for an Office Building with a Multi-Story Atrium

Authors: Karina Natali, Wei-Hwa Chiang

Abstract:

This study examines the stack ventilation performance of an office building located in Taipei, Taiwan. Atriums in this building act as stacks that facilitate buoyancy-driven ventilation. Computational Fluid Dynamic (CFD) simulations are used to identify interior airflow patterns, and then used these patterns to assess the building’s heat expulsion efficiency. Ambient temperatures of 20°C were adopted as the typical seasonal spring temperature range in Taipei. Further, “zero-wind” conditions are established to ensure simulation results reflected only the buoyancy effect. After checking results against neutral pressure level (NPL) level, airflow, air velocity, and indoor temperature stratification, the lower stack is modified to reduce the NPL in order to remove heat accumulated on the top floor.

Keywords: Natural ventilation, side outlet, stack effect, thermal comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
717 Liquid-Liquid Equilibria for Ternary Mixtures of (Water + Carboxylic Acid+ MIBK), Experimental, Simulation, and Optimization

Authors: D. Laiadi, A. Hasseine, A. Merzougui

Abstract:

In this work, Experimental tie-line results and solubility (binodal) curves were obtained for the ternary systems (water + acetic acid + methyl isobutyl ketone (MIBK)), (water + lactic acid+ methyl isobutyl ketone) at T = 294.15K and atmospheric pressure. The consistency of the values of the experimental tie-lines was determined through the Othmer-Tobias and Hands correlations. For the extraction effectiveness of solvents, the distribution and selectivity curves were plotted. In addition, these experimental tieline data were also correlated with NRTL model. The interaction parameters for the NRTL model were retrieved from the obtained experimental results by means of a combination of the homotopy method and the genetic algorithms.

Keywords: Liquid-liquid equilibria, homotopy methods, carboxylic acid, NRTL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5598
716 Prediction of Henry's Constant in Polymer Solutions using the Peng-Robinson Equation of State

Authors: Somayeh Tourani, Alireza Behvandi

Abstract:

The peng-Robinson (PR), a cubic equation of state (EoS), is extended to polymers by using a single set of energy (A1, A2, A3) and co-volume (b) parameters per polymer fitted to experimental volume data. Excellent results for the volumetric behavior of the 11 polymer up to 2000 bar pressure are obtained. The EoS is applied to the correlation and prediction of Henry constants in polymer solutions comprising three polymer and many nonpolar and polar solvents, including supercritical gases. The correlation achieved with two adjustable parameter is satisfactory compared with the experimental data. As a result, the present work provides a simple and useful model for the prediction of Henry's constant for polymer containing systems including those containing polar, nonpolar and supercritical fluids.

Keywords: Equation of state, Henry's constant, Peng-Robinson, polymer solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
715 Evaluation of Cigarette Filters Rods as a Biofilm Carrier in Integrated Fixed Film Activated Sludge Process

Authors: A. Sabzali, M. Nikaeen, B. Bina

Abstract:

The purpose of the experiments described in this article was the comparison of integrated fixed film activated sludge (IFAS) and activated sludge (AS) system. The IFAS applied system consists of the cigarette filter rods (wasted filter in tobacco factories) as a biofilm carrier. The comparison with activated sludge was performed by two parallel treatment lines. Organic substance, ammonia and TP removal was investigated over four month period. Synthetic wastewater was prepared with ordinary tap water and glucose as the main sources of carbon and energy, plus balanced macro and micro nutrients. COD removal percentages of 94.55%, and 81.62% were achieved for IFAS and activated sludge system, respectively. Also, ammonia concentration significantly decreased by increasing the HRT in both systems. The average ammonia removal of 97.40 % and 96.34% were achieved for IFAS and activated sludge system, respectively. The removal efficiency of total phosphorus (TP-P) was 60.64%, higher than AS process by 56.63% respectively.

Keywords: Wastewater, biofilm carrier, cigarette filters rods, Activated Sludge, IFAS, nitrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
714 Numerical Study of Microscale Gas Flow-Separation Using Explicit Finite Volume Method

Authors: A. Chaudhuri, C. Guha, T. K. Dutta

Abstract:

Pressure driven microscale gas flow-separation has been investigated by solving the compressible Navier-Stokes (NS) system of equations. A two dimensional explicit finite volume (FV) compressible flow solver has been developed using modified advection upwind splitting methods (AUSM+) with no-slip/first order Maxwell-s velocity slip conditions to predict the flowseparation behavior in microdimensions. The effects of scale-factor of the flow geometry and gas species on the microscale gas flowseparation have been studied in this work. The intensity of flowseparation gets reduced with the decrease in scale of the flow geometry. In reduced dimension, flow-separation may not at all be present under similar flow conditions compared to the larger flow geometry. The flow-separation patterns greatly depend on the properties of the medium under similar flow conditions.

Keywords: AUSM+, FVM, Flow-separation, Microflow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
713 Enhanced Coagulation of Disinfection By-Products Precursors in Porsuk Water Resource, Eskisehir

Authors: Zehra Yigit, Hatice Inan, Guven Seydioglu, Vedat Uyak

Abstract:

Natural organic matter (NOM) is heterogeneous mixture of organic compounds that enter the water media from animal and plant remains, domestic and industrial wastes. Researches showed that NOM is likely precursor material for disinfection by products (DBPs). Chlorine very commenly used for disinfection purposes and NOM and chlorine reacts then Trihalomethane (THM) and Haloacetic acids (HAAs) which are cancerogenics for human health are produced. The aim of the study is to search NOM removal by enhanced coagulation from drinking water source of Eskisehir which is supplied from Porsuk Dam. Recently, Porsuk dam water is getting highly polluted and therefore NOM concentration is increasing. Enhanced coagulation studies were evaluated by measurement of Dissolved Organic Carbon (DOC), UV absorbance at 254 nm (UV254), and different trihalomethane formation potential (THMFP) tests. Results of jar test experiments showed that NOM can be removed from water about 40-50 % of efficiency by enhanced coagulation. Optimum coagulant type and coagulant dosages were determined using FeCl3 and Alum.

Keywords: Chlorination, Disinfection by-products, DOC, Enhanced Coagulation, NOM, Porsuk, UV254.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
712 A Software for Calculation of Optimum Conditions for Cotton Bobbin Drying in a Hot-Air Bobbin Dryer

Authors: Hilmi Kuscu, Ahmet Cihan, Kamil Kahveci, Ugur Akyol

Abstract:

In this study, a software has been developed to predict the optimum conditions for drying of cotton based yarn bobbins in a hot air dryer. For this purpose, firstly, a suitable drying model has been specified using experimental drying behavior for different values of drying parameters. Drying parameters in the experiments were drying temperature, drying pressure, and volumetric flow rate of drying air. After obtaining a suitable drying model, additional curve fittings have been performed to obtain equations for drying time and energy consumption taking into account the effects of drying parameters. Then, a software has been developed using Visual Basic programming language to predict the optimum drying conditions for drying time and energy consumption.

Keywords: Drying, bobbin, cotton, PLC control, Visual Basic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
711 Adsorption Refrigeration Working Pairs: The State-of-the-Art in the Application

Authors: Ahmed N. Shmroukh, Ahmed Hamza H. Ali, Ali K. Abel-Rahman

Abstract:

Adsorption refrigeration working pair is a vital and is the main component in the adsorption refrigeration machine. Therefore the development key is laying on the adsorption pair that leads to the improvement of the adsorption refrigeration machine. In this study the state-of-the-art in the application of the adsorption refrigeration working pairs in both classical and modern adsorption pairs are presented, compared and summarized. It is found that the maximum adsorption capacity for the classical working pairs was 0.259kg/kg for activated carbon/methanol and that for the modern working pairs was 2kg/kg for maxsorb III/R-134a. The study concluded that, the performances of the adsorption working pairs of adsorption cooling systems are still need further investigations as well as developing adsorption pairs having higher sorption capacity with low or no impact on environmental, to build compact, efficient, reliable and long life performance adsorption chillier. Also, future researches need to be focused on designing the adsorption system that provide efficient heating and cooling for the adsorbent materials through distributing the adsorbent material over heat exchanger surface, to allow good heat and mass transfer between the adsorbent and the refrigerant.

Keywords: Adsorption, Adsorbent/Adsorbate Pairs, Refrigeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4753
710 Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane

Authors: Zita Šereš, Dragana Šoronja Simović, Ljubica Dokić, Lidietta Giorno, Biljana Pajin, Cecilia Hodur, Nikola Maravić

Abstract:

Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore size of 200 nm at transmembrane pressure in range up to 3 bar and in range of flow rate up to 300 L/h. Box–Behnken design was selected for the experimental work and the responses considered were permeate flux and chemical oxygen demand (COD) reduction. The reduction of the permeate COD was in the range 40-60% according to the feed. The highest permeate flux achieved during the process of microfiltration was 160 L/m2h.

Keywords: Ceramic membrane, edible oil, microfiltration, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611