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Abstract—Traditional mechanical control systems in thrust
vectoring are efficient in rocket thrust guidance but their costs
and their weights are excessive. The fluidic injection in the nozzle
divergent constitutes an alternative procedure to achieve the goal. In
this paper, we present a 3D analytical model for fluidic injection
in a supersonic nozzle integrating an orifice. The fluidic vectoring
uses a sonic secondary injection in the divergent. As a result, the
flow and interaction between the main and secondary jet has built in
order to express the pressure fields from which the forces and thrust
vectoring are deduced. Under various separation criteria, the present
analytical model results are compared with the existing numerical
and experimental data from the literature.

Keywords—Flow separation, Fluidic thrust vectoring, Nozzle,
Secondary jet, Shock wave.

NOMENCLATURE

NPR Nozzle pressure ratio (P0i

Pa
).

SPR Secondary pressure ratio (P0j

P0i
).

P0i Chamber stagnation pressure.
P0j Second injection pressure.
Pa Ambient pressure.
Pp Plateau pressure.
P Isentropic pressure.
Pb The pressure at the hyperbolic surface.
Cd Discharge Coefficient.
δ Deviation angle.
Fx,y Force components in x and y direction.
Fj Second injection reactive force.
�Fc Primary flow reactive force (Dynalpy flux).
x Nozzle axis with coordinate beginning at the nozzle

throat.
xt Divergent length of the nozzle.
xm x-coordinate of the secondary injection port.
xd x-coordinate of the end of the secondary injection

port.
xe x-coordinate of the end of the nozzle.
Ac Surface of the throat of the nozzle.
Ajc Surface of the orifice.
Ae Surface of the nozzle at the exit.
fm Mass-flow ratio.
α Divergent conical half-angle.
r Radius of the nozzle at x.
rc Throat radius.
ψ Angular coordinate.
xs x-coordinate of the separation point.

I. Mnafeg is with the LIM Laboratory, Polytechnic School of Tunisia,
BP743, 2078 La Marsa, Tunisia. mnafeg_fr@yahoo.fr

A. Abichou is with the LIM Laboratory, Polytechnic School of Tunisia,
BP743, 2078 La Marsa, Tunisia. Azgal.Abichou@ept.rnu.tn

L. Beji is with the IBISC-EA4526 Laboratory, University
of Evry, 40 rue du Pelvoux, 91020 Evry, France.
Lotfi.Beji@ibisc.univ-evry.fr

Δ Standoff distance.
Ls Curvature radius.
ψMax Maximum angle to the hyperbolic curve.
ψ0 Maximum angle to the boundary of the orifice.
γ Heat capacity ration of the primary flow.
γj Heat capacity ration of the secondary flow.
M Mach number.

I. INTRODUCTION

THRUST vector control via secondary injection for rocket
propulsion systems has been investigated since the 1950s.

Using fluidic control in stead of mechanical control system
permits to eliminate the kinematic structure and mechanical
actuators. Hence, a significant reduction in nozzle weight, cost,
and complexities. In the early investigation, jet penetration
experiments were performed by Hefner and Sterrett [8],
Avduevskii et al. [9], and Vlagov et al. [10].

There are three main types of fluidic injection: counterflow,
coflow, and shock vector control. The investigation here cover
Shock Vector Control (SVC) which uses the injection of
secondary flow downstream the throat in the diverging section.
The circular sonic injection is parametrically analyzed by
Shetz and Billig [13] and also by the early researchers on
the topic of fluidic thrust vectoring of axisymmetric nozzles
such as Nielson et al. [14], and Guhse [15]. The secondary
fluid injected, creates an unsteady complex three-dimensional
flow field inside the nozzle. This complex flow field includes
not only a strong bow-shock creating asymmetry and a
weak separation shock due to boundary layer separation
[16] upstream of the injection location but also a Mach
disc and reattachment region accompanied by recompression
downstream of the injection orifice as shown in Fig. 1. At
the injection port a largely under-expanded secondary flow
expands suddenly through the Prandtl-Meyer fan emerging at
the edge of injection port and it is naturally surrounded by the
barrel shock wave.

The fluidic injection in the divergent of a supersonic nozzle
using orifice produces a dissymmetry in the distribution of
the pressure at the wall of the nozzle. This distribution
depends of the nozzle’s regime. A circular transverse sonic
injection at the flat plate into supersonic cross-flow is a purely
three-dimensional case where flow effects propagation in all
three spatial directions.

Compared to three-dimensional numerical calculations,
bases on solving the Navier-Stokes equations requiring long
calculation time and sometimes prohibitive, the realization of
a 3D analytical model becomes necessary in order to reduce
the computation burden.

In this paper, we will investigate the fluidic thrust vectoring
by SVC using orifice injector in section II. Section III deals

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:9, No:7, 2015 

1352International Scholarly and Scientific Research & Innovation 9(7) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
7,

 2
01

5 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

02
31

4.
pd

f



Fig. 1. Complex flow structure associated with SITVC [1]

Fig. 2. Secondary sonic injection thrust vectoring principle.

with forces computations including the balance forces for
the given flow zones. In section IV, the implementation and
validation of our results on a Matlab platform is addressed.

II. ANALYTICAL APPROACH

The analytical model of a fluidic thrust vector is based
on the study of the analytical blunt-body model proposed
by Spaid and Zukoski [2] [3]. The 2D case has been
studied by Mangin [7] and he found that optimal effects are
assumingly reached with secondary injection adapted to the
plateau pressure of the separation zone. The expression of the
penetration height and separation criterion is further improved
for ring and circular injection and reported by Maarouf [11]
and Sellam [12].

The secondary gas injection into the divergent of a
supersonic nozzle leads to shock interaction and separation
zone upstream the injection orifice that cause the deviation of
the main nozzle flow by an angle δ (Fig. 2). The injected flow
acts like a virtual pressure ramp when seen by the primary
flow. As the main thrust producing flow passes through this
shock it turns away from the injection port (orifice) and by
doing such vectors the force produced.

Hence, we can define the deviation angle δ = tan−1 Fy

Fx
,

where Fx and Fy are forces along x and y directions. We
will consider a conical nozzle with throat radius and divergent
conical half-angle α (Fig. 3).

With respect to the reference frame R(X,Y, Z) with the
origin assumed to be coincide with the throat center, X is
oriented toward the divergent, and the Y is oriented toward

Fig. 3. Geometry of the conical nozzle.

Fig. 4. Zone type’s at the wall of the nozzle.

the injector. The surface parametrization of the divergent is:

�S =

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ r−rc

tanα
r cosψ
r sinψ

⎞
⎠

R

with r = rc + x tanα.
A surface element �ds is oriented outward surface �ds = ds�n
with �n is the normal vector of the surface S

�ds =

⎛
⎝ −rdrdψ

r cosψdxdψ
r sinψdxdψ

⎞
⎠

The phenomena of sonic injection through an orifice
produces two types of zone at the wall of the nozzle (Fig.4).
The disturbed zone by this sonic injection and it is locate
between the abscissa of the separation point xs and the end
of the orifice. The undisturbed zone where the primary flow
didn’t interact with the secondary jet located at the remain of
nozzle’s wall.

The analytical model is mainly based on determining the
characteristic of the hyperbolic shape of the line delimiting
the separation area upstream the injection port. This shape is
called separation line which means the separation line of the
boundary layer due to the barrier presented by the injected
fluid. It will be distributed into several sections: front, around
and behind the injection slot. Modeling of this line is also
dependent of the operating regime of the nozzle (Fig. 5).

In this paper we will use a conical nozzle with NPR =
37.5, so the regime of this nozzle is under-expanded regime.
The wall of the nozzle is divided in four parts as shown in
Fig. 6:

• Zone 1 (Ω1): it is undisturbed zone and the pressure is
isentropic pressure P (x) ;
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Fig. 5. The shape of the separation line.

Fig. 6. The different zones at the wall of the nozzle.

• Zone 2 (Ω2): located at the two sides of the interaction
area and the pressure is isentropic pressure P (x) ;

• Zone 3 (Ω3): this is the interaction zone and the pressure
is Pb(x, ψ);

• Zone 4 (Ω4): in this area we ignore the reattachment
effects of the secondary jet at the wall of the nozzle,
so the pressure is isentropic pressure P (x) .

where for i = 1, 4 the Ωi set will be defined subsequently.
In the undisturbed zone, the pressure is calculated using the
isentropic relation, so

P (x)

P0i
=

(
1 +

1

2
(γ − 1)M2

) γ
1−γ

but in the disturbed zone, the formula of pressure is more
complicated. The shape of this zone is hyperbolic curve and
we will use the formulas of Billig [4] to calculate the curvature
radius of this curve. The pressure is this zone is Pb(x, ψ) and
it is a function of the abscissa and the angle ψ .

Pb(x, ψ) = (Pp − P (x))

(
1−

(
ψ

ψMax

)2
) 1

2

where P (x) is the isentropic pressure and Pp is the plateau
pressure calculated using an adequate separation criteria.

III. FORCES COMPUTATION

The geometry of the supersonic nozzle is an important
parameter in the calculation of the forces. The force �F exerted
by the pressure P on the control surface S, is divided into two
components (Fig. 7): an axial component �Fx and a normal

Fig. 7. Forces at the control surface (CS).

component �Fy . For an element surface �ds, the elementary
force �dF is given by

−→
dF = −P (x)ds�n, so

−→
dF =

( −→
dF x−→
dF y

)
=

( −P (x)ds�nx
−P (x)ds�ny

)

The computation of the forces in the zone 1 and zone 4 is
done for the whole wall of the nozzle unlike the zone 3 and
zone 2. First, we will compute the forces for the zone 1 and
zone 4, after, we will calculate these forces for the zone 3 and
finally, we will close the computation for the zone 2.
A. Zone 1.
The zone 1 is defined by: Ω1 = {(x, r, ψ)/0 ≤ x ≤ xs, rc ≤
r ≤ rs, 0 ≤ ψ ≤ 2π}. First, we will compute the force �F1x

along the x direction:

�F1x =

∫∫
zone1

−→
dF 1x

=

xs∫
0

2π∫
0

(−P (x))(−rdrdψ)�i

=

xs∫
0

2π∫
0

P (x)rdrdψ�i

=

xs∫
0

P (x)r

⎡
⎣ 2π∫

0

dψ

⎤
⎦ dr�i

= 2π

xs∫
0

P (x)rdr�i (1)
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and the force �F1y along y direction is computed as follow:

�F1y =

∫∫
zone1

−→
dF 1y

=

xs∫
0

2π∫
0

(−P (x))(r cosψdxdψ)�j

= −
xs∫
0

2π∫
0

P (x)r cosψdxdψ�j

= −
xs∫
0

P (x)r

⎡
⎣ 2π∫

0

cosψdψ

⎤
⎦ dx�j

= −
xs∫
0

P (x)r(sin 2π − sin 0)dx�j

= �0 (2)

B. Zone 4. This zone is defined by Ω4 = {(x, r, ψ)/xd ≤
x ≤ xe, rd ≤ r ≤ re, 0 ≤ ψ ≤ 2π}. The force �F4x along the
x direction is given by:

�F4x =

∫∫
zone4

−→
dF 4x

=

xe∫
xd

2π∫
0

(−P (x))(−rdrdψ)�i

=

xe∫
xd

2π∫
0

P (x)rdrdψ�i

=

xe∫
xd

P (x)r

⎡
⎣ 2π∫

0

dψ

⎤
⎦ dr�i

= 2π

xe∫
xd

P (x)rdr�i (3)

and the force along �F4y direction the y direction is computed

Fig. 8. The zone 3 parameters.

as follow:

�F4y =

∫∫
zone4

−→
dF 4y

=

xe∫
xd

2π∫
0

(−P (x))(r cosψdxdψ)�j

= −
xe∫
xd

2π∫
0

P (x)r cosψdxdψ�j

= −
xe∫
xd

P (x)r

⎡
⎣ 2π∫

0

cosψdψ

⎤
⎦ dx�j

= −
xe∫
xd

P (x)r(sin 2π − sin 0)dx�j

= �0 (4)

C. Zone 3.
This zone is divided into three sub-zones

• zone3-1: Ω3−1 = {(x, r, ψ)/xs ≤ x ≤ xm, rs ≤ r ≤
rm,−ψMax ≤ ψ ≤ ψMax}.

• zone3-2: Ω3−2 = {(x, r, ψ)xm ≤ x ≤ xd, rm ≤ r ≤
rd, ψ0 ≤ ψ ≤ ψMax}.

• zone3-3: Ω3−3 = {(x, r, ψ)/xm ≤ x ≤ xd, rm ≤ r ≤
rd,−ψMax ≤ ψ ≤ −ψ0}.

The Fig 8 explains the different parameters used to identify
each sub-zone. The ψMax and ψ0 depend only of the x
abscissa. So, �F3x = �F31x+ �F32x+ �F33x

�F3x =

∫∫
zone3−1

−→
dF 31x +

∫∫
zone3−2

−→
dF 32x +

∫∫
zone3−3

−→
dF 33x (5)

Let us compute these components. The first component,

�F31x =

xm∫
xs

ψMax∫
−ψMax

(−Pb)(−rdrdψ)�i

=

xm∫
xs

ψMax∫
−ψMax

Pbrdrdψ�i
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The second component,

�F32x =

xd∫
xm

ψMax∫
ψ0

(−Pb)(−rdrdψ)�i

=

xd∫
xm

ψMax∫
ψ0

Pbrdrdψ�i

The third component,

�F33x =

xd∫
xm

−ψ0∫
−ψMax

(−Pb)(−rdrdψ)�i

=

xd∫
xm

−ψ0∫
−ψMax

Pbrdrdψ�i

=

xd∫
xm

ψMax∫
ψ0

Pbrdrdψ�i (6)

Consequently,

�F3x =

xm∫
xs

ψMax∫
−ψMax

Pbrdrdψ�i+ 2

xd∫
xm

ψMax∫
ψ0

Pbrdrdψ�i (7)

The same procedure will be used to compute �F3y . As a result:

�F3y =

xm∫
xs

ψMax∫
−ψMax

Pbr cosψdxdψ�j−2

xd∫
xm

ψMax∫
ψ0

Pbr cosψdxdψ�j

(8)
D. Zone 2. This zone is defined by Ω2 = {(x, r, ψ)/xs ≤

x ≤ xd, rs ≤ r ≤ rd, ψMax ≤ ψ ≤ 2π − ψMax}
The force �F2x along the x direction is given by:

�F2x =

∫∫
zone2

−→
dF 2x (9)

Thus,

�F2x =

xd∫
xs

P (x)(2π − 2ψMax)rdr�i (10)

and the �F2y is given by:

�F2y = 2

xd∫
xs

P (x)r sinψMax)dx�j (11)

E. Forces Balance.
- We have to add to the previous forces two other forces, the
first is the dynalpy flux of the primary flow at the throat of the
nozzle �Fc and the second is the reactive force of the secondary
flow at the orifice �Fj , then we have:

�Fc = (PcAc + ρcu
2
cAc)�i = πr2cPc(1 + γ)�i

where Pc = P0i(1 +
γ−1
2 )

γ
1−γ .

The vector of the reactive force of the secondary flow is �Fj =

Fig. 9. Graphical interface of the program.

Fj(sinα�i− cosα�j), with Fj = CdAjcPjc(1 + γj).
The pressure Pjc at the orifice injector is given by: Pjc =

P0j(1 +
γj−1

2 )
γj

1−γj , and Ajc = π
(
b
2

)2
Also, we can define the following components

�Fjx = CdAjcPjc(1 + γj) sinα�i

and
�Fjy = −CdAjcPjc(1 + γj) cosα�j

which are necessary to compute the balance forces at the x
and y directions.

Now, we may write the following:

�Fx = �F1x + �F2x + �F3x + �F4x + �Fc + �Fjx

and
�Fy = �F1y + �F2y + �F3y + �F4y + �Fjy

IV. IMPLEMENTATION AND VALIDATION

Using Matlab, we implement all the formulas that help
us to calculate the value of the forces along x and y
directions and the deviation angle δ. At the same interface, the
program displays some others values that help us to understand
the physical phenomena behind the fluidic injection in the
divergent. Fig 9 is an example of the output of this program.
This program gives us the possibility to choose different
separation criteria in the computation of xs.

We will use the results published by Zmijanovic and
M.Sellam [5] to validate our analytical model . The validation
is conducted with a conical type of the C-D axisymmetric
nozzles of designed nozzle pressure ratios NPR = 37,5, throat
radius of 9,72mm and expansion ratio Ac

Ae
= 0.236 and the

divergent conical half-angle of 5.42deg. The circular b = 6mm
diameter injection port is normal to the nozzle axis and at
xm

xt
= 0.9

Therefore, the value of the NPR is kept in the design adapted
regime of NPR=37.5 while the SPR is varied. These results
are presented in Table I.
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TABLE I: Analytical, Numerical And Experimental Values Of δ.

xm

xt
= 0.9

SPR fm δ-Model δ-Num δ-Exp
0.667 0.055 5.49◦ 5.67◦ 5.6◦

0.833 0.068 6.79◦ 6.64◦ 6.7◦

1 0.081 8.04◦ 8.05◦ 8.2◦

1.167 0.098 9.23◦ 9.15◦ 9.2◦

Fig. 10. δ versus SPR.

TABLE II: Absolute Error Between The Analytical And Numerical Values
Of δ.

δ-Model δ-Num Error = | δ-Model-δ-Num|
5.49◦ 5.67◦ 0.18◦

6.79◦ 6.64◦ 0.15◦

8.04◦ 8.05◦ 0.01◦

9.23◦ 9.15◦ 0.08◦

The analytical, numerical, and experimental results are plotted
together in Fig. 9

At the Fig. 10 which depicts vectoring versus SPR
(mass-flow ratio), optimal angle is found in the range of
SPR = 1 delivering the δ = 8.049. To understand deeply
the validation of the 3D-analytical model, we calculated the
deviation angle δ for different separation criteria. The Table
III resume all the values of the deviation angle δ computed
for five different separations criteria and compared with the
numerical and experimental values.

TABLE III: Analytical For Different Separation Criteria, Numerical And
Experimental Values Of δ.

SPR 0.667 0.833 1 1.167
δ-Model - Schilling 5.29 6.53 7.77 8.99
δ-Model - Zukoski 5.49◦ 6.79◦ 8.04◦ 9.23◦

δ-Model - Summerfield 5.32 6.57 7.78 8.97
δ-Model - Stark 5.19 6.43 7.63 8.84

δ-Model - Schmuker 5.34 6.61 7.84 9.04
δ-Num 5.67◦ 6.64◦ 8.05◦ 9.15◦
δ-Exp 5.6◦ 6.7◦ 8.2◦ 9.2◦

We remark that the choice of the separation criteria has
some influence in the computation of the deviation angle
and the best separation criteria to choose is Zukoski criteria.
Big majority of the results was in excellent agreement with
the numerical and the experimental data. Numerical studies

Fig. 11. δ versus SPR for different separation criteria.

Fig. 12. δ versus the location of the secondary injection.

have been carried out by Rajendran et al. [6] for the design
optimization of a thrust vector control system for aerospace
applications and they study the effect of the location of
the secondary injection nozzle. Parametric analytical studies
have been carried out with various secondary jet pressures at
different divergent locations as shown in Table IV.

TABLE IV: Value Of δ While Varying The Location Of The Secondary
Injection.

NPR = 37.5 SPR=1
xm
xt δ-Model - Zukoski
0.1 7.33◦

0.2 13.9◦

0.3 13.5◦

0.4 11.15◦

0.5 9.96◦

0.6 9.25◦

0.7 8.73◦

0.8 8.34◦

0.9 8.049◦

The parametric studies show that the sonic secondary jet
nozzle fixed at a location around 20% of the divergent nozzle
length away from the nozzle exit will facilitate better thrust
vectoring.

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:9, No:7, 2015 

1357International Scholarly and Scientific Research & Innovation 9(7) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
7,

 2
01

5 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

02
31

4.
pd

f



V. CONCLUSION

The analytical model shows that the deviation angle depends
on many parameters such as the mass-flow rate, position and
shape of the injector, angle of the secondary injection, and
pressure ratios NPR and SPR. The efficiency and validity of
the developed model, taking the numerical and experimental
data from the literature, has been proved under various
separation criteria with good accuracy. Further, fixing the
sonic secondary jet nozzle at a distance around 20% of the
total divergent nozzle length away from the exit boundary
could facilitate better thrust vectoring for supersonic aerospace
vehicles. As perspective to our investigation, the obtained
analytical model including boundary conditions is useful in
tackling to the guidance control problem.
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