Search results for: Used fuel packing plant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1581

Search results for: Used fuel packing plant

201 Processing and Economic Analysis of Rain Tree (Samanea saman) Pods for Village Level Hydrous Bioethanol Production

Authors: Dharell B. Siano, Wendy C. Mateo, Victorino T. Taylan, Francisco D. Cuaresma

Abstract:

Biofuel is one of the renewable energy sources adapted by the Philippine government in order to lessen the dependency on foreign fuel and to reduce carbon dioxide emissions. Rain tree pods were seen to be a promising source of bioethanol since it contains significant amount of fermentable sugars. The study was conducted to establish the complete procedure in processing rain tree pods for village level hydrous bioethanol production. Production processes were done for village level hydrous bioethanol production from collection, drying, storage, shredding, dilution, extraction, fermentation, and distillation. The feedstock was sundried, and moisture content was determined at a range of 20% to 26% prior to storage. Dilution ratio was 1:1.25 (1 kg of pods = 1.25 L of water) and after extraction process yielded a sugar concentration of 22 0Bx to 24 0Bx. The dilution period was three hours. After three hours of diluting the samples, the juice was extracted using extractor with a capacity of 64.10 L/hour. 150 L of rain tree pods juice was extracted and subjected to fermentation process using a village level anaerobic bioreactor. Fermentation with yeast (Saccharomyces cerevisiae) can fasten up the process, thus producing more ethanol at a shorter period of time; however, without yeast fermentation, it also produces ethanol at lower volume with slower fermentation process. Distillation of 150 L of fermented broth was done for six hours at 85 °C to 95 °C temperature (feedstock) and 74 °C to 95 °C temperature of the column head (vapor state of ethanol). The highest volume of ethanol recovered was established at with yeast fermentation at five-day duration with a value of 14.89 L and lowest actual ethanol content was found at without yeast fermentation at three-day duration having a value of 11.63 L. In general, the results suggested that rain tree pods had a very good potential as feedstock for bioethanol production. Fermentation of rain tree pods juice can be done with yeast and without yeast.

Keywords: Fermentation, hydrous bioethanol, rain tree pods, village level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
200 Effects of Hypoxic Duration at Different Growth Stages on Yield Potential of Waxy Corn (Zea mays L.)

Authors: S. Boonlertnirun, R. Suvannasara, K. Boonlertnirun

Abstract:

Hypoxia has negative effects on growth and crop yield, its severity is so varied depending on crop growth stages, duration of hypoxia and crop species. The objective was to evaluate the sensitive growth stage and the duration of hypoxia negatively affecting growth and yield of waxy corn. Pot experiment was conducted using a split plot in randomized complete block with 3 growth stages: V3 (3-4 true leaves), V7 (7-8 true leaves) and R1 (silking stage), and 3 hypoxic durations: 6, 9 and 12 days, in an open –ended outdoor greenhouse during January to March 2013. The results revealed that different growth stages had significantly (p < 0.5) different responses to hypoxia, seeing that the sensitive growth stage affecting plant height, yield and yield components was mostly detected in V7 growth stage whereas leaf greenness and days to silking were sensitive to hypoxia at R1 growth stage. Different hypoxic durations significantly affected yield and yield components, hypoxic duration of 12 days showed the most negative effect greater than the others. In this present study, it can be concluded that waxy corn plants were waterlogged at V7 growth stage for 12 days had the most negative effect on yield and yield components.

Keywords: Hypoxia duration, waxy corn, growth stage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
199 Bioconcentration Analysis of Iodine Species in Seaweed (Eucheuma cottonii) from Maluku Marine as Alternative Food Source

Authors: Yeanchon H. Dulanlebit, Nikmans Hattu, Gloria Bora

Abstract:

Seaweed is a type of macro algae which are good source of iodine and have been widely used as food and nutrition supplement. One of iodine species that found in ocean plant is iodate. Analysis of iodate in seaweed (Eucheuma cottonii) from coastal area of Maluku has been done. The determination is done by using spectrophotometric method. Iodate in sample is reduced in excess of potassium iodide in the presence of acid solution, and then is reacted with starch to form blue complex. The study found out that the highest wavelength on determination of iodate species using spectrophotometer analysis method is 570 nm. Optimum value to yield maximum absorption is used in this research. Contents of iodate in seawater from coastal area of Ambon Island, Western Seram and Southeast Maluku are 0.2655, 0.2719 and 0.1760 mg/L, respectively. While in seaweeds from Ambon Island, Western Seram, Southeast Maluku-Taar, Ohoidertawun and Wab are 6.3122, 6.3293, 6.2333, 3.7406 and 4.4207 mg/kg in dry weight. Bioconcentration (enrichment) factor of iodate in seaweed (Eucheuma cottonii) from the three samples (cluster) is different; in Coastal area of Ambon Island, Western Seram and Southeast Maluku respectively are 23.78, 23.28 and 27.26.

Keywords: Bioconcentration, Eucheuma cottonii, iodate, iodine, seaweed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932
198 Simulation of a Process Design Model for Anaerobic Digestion of Municipal Solid Wastes

Authors: Asok Adak, Debabrata Mazumder, Pratip Bandyopadhyay

Abstract:

Anaerobic Digestion has become a promising technology for biological transformation of organic fraction of the municipal solid wastes (MSW). In order to represent the kinetic behavior of such biological process and thereby to design a reactor system, development of a mathematical model is essential. Addressing this issue, a simplistic mathematical model has been developed for anaerobic digestion of MSW in a continuous flow reactor unit under homogeneous steady state condition. Upon simulated hydrolysis, the kinetics of biomass growth and substrate utilization rate are assumed to follow first order reaction kinetics. Simulation of this model has been conducted by studying sensitivity of various process variables. The model was simulated using typical kinetic data of anaerobic digestion MSW and typical MSW characteristics of Kolkata. The hydraulic retention time (HRT) and solid retention time (SRT) time were mainly estimated by varying different model parameters like efficiency of reactor, influent substrate concentration and biomass concentration. Consequently, design table and charts have also been prepared for ready use in the actual plant operation.

Keywords: Anaerobic digestion, municipal solid waste (MSW), process design model, simulation study, hydraulic retention time(HRT), solid retention time (SRT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679
197 LFC Design of a Deregulated Power System with TCPS Using PSO

Authors: H. Shayeghi, H.A. Shayanfar, A. Jalili

Abstract:

In the LFC problem, the interconnections among some areas are the input of disturbances, and therefore, it is important to suppress the disturbances by the coordination of governor systems. In contrast, tie-line power flow control by TCPS located between two areas makes it possible to stabilize the system frequency oscillations positively through interconnection, which is also expected to provide a new ancillary service for the further power systems. Thus, a control strategy using controlling the phase angle of TCPS is proposed for provide active control facility of system frequency in this paper. Also, the optimum adjustment of PID controller's parameters in a robust way under bilateral contracted scenario following the large step load demands and disturbances with and without TCPS are investigated by Particle Swarm Optimization (PSO), that has a strong ability to find the most optimistic results. This newly developed control strategy combines the advantage of PSO and TCPS and has simple stricture that is easy to implement and tune. To demonstrate the effectiveness of the proposed control strategy a three-area restructured power system is considered as a test system under different operating conditions and system nonlinearities. Analysis reveals that the TCPS is quite capable of suppressing the frequency and tie-line power oscillations effectively as compared to that obtained without TCPS for a wide range of plant parameter changes, area load demands and disturbances even in the presence of system nonlinearities.

Keywords: LFC, TCPS, Dregulated Power System, PowerSystem Control, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
196 Identification of Active Phytocomponents in the Ethyl Acetate Extract of Glycosmis pentaphylla Retz. DC by Using GC-MS

Authors: M. Sivakumar, D. Chamundeeswari

Abstract:

Glycosmis pentaphylla is one of the medicinally important plants belonging to the family Rutaceae, commonly known as “Anam or Panal” in Tamil. Traditionally, leaves are useful in fever, hepatopathy, eczema, skin disease, helminthiasis, wounds, and erysipelas. The fruits are sweet and are useful in vitiated conditions of vata, kapha, cough, and bronchitis. The roots are good for facial inflammations, rheumatism, jaundice, and anemia. The preliminary phytochemical investigations indicated the presence of alkaloids, terpenoids, flavonoids, tannins, sugar, glycoside, and phenolic compounds. In the present study, the root part of Glycosmis pentaphylla was used, and the root was collected from Western Ghats of South India. The root was sun/shade dried and pulverized to powder in a mechanical grinder. The powder was successively extracted with various solvents, and the ethyl acetate extract of Glycosmis pentaphylla has been subjected to the GC-MS analysis. Amongst the 46 chemical constituents identified from this plant, three major phytoconstituents were reported for the first time. Marmesin, a furanocumarin compound with the chemical structure 7H-Furo (3,2-G) (1)Benzopyran-7-one,2,3–dihydro–2 - (1-Hydroxy-1methylethyl)-(s) is one of the three compounds identified for the first time at the concentration of 11-60% in ethyl acetate extract of Glycosmis pentaphylla. Others include, Beta.-Fagarine (4.71%) and Paverine (13.08%).

Keywords: Ethyl acetate extract, Glycosmis pentaphylla, GC-MS analysis, phytochemicals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
195 Partial Purification of Cytotoxic Peptides against Gastric Cancer Cells from Protein Hydrolysate of Euphorbia hirta Linn.

Authors: S. Yodyingyong, C. Chaichana, C. Nuchsuk, S. Roytrakul, N. P. T-Thienprasert, S. Ratanapo

Abstract:

Protein hydrolysates prepared from a number of medicinal plants are promising sources of various bioactive peptides. In this work, proteins from dried whole plant of Euphorbia hirta Linn. were extracted and digested with pepsin for 12h. The hydrolysates of lesser than 3 KDa were fractionated by a cut-off membrane. The peptide hydrolysate was then purified by an anion-exchange chromatography on DEAE-Sephacel™ column and reverse-phase chromatography on Sep-pak C18 column, respectively. The cytotoxic effect of each peptide fraction against a gastric carcinoma cell line (KATO-III, ATCC No. HTB103) was investigated using colorimetric MTT viability assay. A human liver cell line (Chang Liver, CLS No. 300139) was used as a control normal cell line. Two purified peptide peaks, peak l and peak ll at 100µg peptides mL-1 affected cell viability of the gastric cancer cell lines to 63.85±4.94 and 66.92±6.46%, respectively. Our result showed for the first time that the peptide fractions derived from protein hydrolysate of Euphorbia hirta Linn. have anti-gastric cancer activity, which offers a potential novel and natural anti-gastric cancer remedy.

Keywords: Cytotoxic, peptides, Euphorbia hirta Linn., gastric carcinoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
194 Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF

Authors: T. C. Manjunath, B. Bandyopadhyay

Abstract:

This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.

Keywords: Smart structure, Timoshenko beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
193 Evaluation of Antioxidant Activity as a Function of the Genetic Diversity of Canna indica Complex

Authors: A. Rattanapittayapron, O. Vanijajiva

Abstract:

Canna indica is a prominent species complex in tropical and subtropical areas. They become indigenous in Southeast Asia where they have been introduced. At present, C. indica complex comprises over hundred hybrids, are cultivated as commercial horticulture. The species complex contains starchy rhizome having economic value in terms of food and herbal medicine. In addition, bright color of the flowers makes it a valuable ornamental plant and potential source for natural colorant. This study aims to assess genetic diversity of four varieties of C. indica complex based on SRAP (sequence-related amplified polymorphism) and iPBS (inter primer binding site) markers. We also examined phytochemical characteristics and antioxidant properties of the flower extracts from four different color varieties. Results showed that despite of the genetic variation, there were no significant differences in phytochemical characteristics and antioxidant properties of flowers. The SRAP and iPBS results agree with the more primitive traits showed by morphological information and phytochemical and antioxidant characteristics from the flowers. Since Canna flowers has long been used as natural colorants together with the antioxidant activities from the ethanol extracts in this study, there are likely to be good source for cosmetics additives.

Keywords: Canna indica, antioxidant activity, genetic diversity, SRAP, iPBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371
192 Urban Corridor Management Strategy Based on Intelligent Transportation System

Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain

Abstract:

Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads.

Keywords: Congestion, ITS Strategies, Mobility, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
191 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils

Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente

Abstract:

Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.

Keywords: Artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L, Schinus terebinthifolius raddi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
190 Effect of Valve Pressure Drop in Exergy Analysis of C2+ Recovery Plants Refrigeration Cycles

Authors: B. Tirandazi, M. Mehrpooya, A. Vatani

Abstract:

This paper provides an exergy analysis of the multistage refrigeration cycle used for C2+ recovery plant. The behavior of an industrial refrigeration cycle with refrigerant propane has been investigated by the exergy method. A computational model based on the exergy analysis is presented for the investigation of the effects of the valves on the exergy losses, the second law of efficiency, and the coefficient of performance (COP) of a vapor compression refrigeration cycle. The equations of exergy destruction and exergetic efficiency for the main cycle components such as evaporators, condensers, compressors, and expansion valves are developed. The relations for the total exergy destruction in the cycle and the cycle exergetic efficiency are obtained. An ethane recovery unit with its refrigeration cycle has been simulated to prepare the exergy analysis. Using a typical actual work input value; the exergetic efficiency of the refrigeration cycle is determined to be 39.90% indicating a great potential for improvements. The simulation results reveal that the exergetic efficiencies of the heat exchanger and expansion sections get the lowest rank among the other compartments of refrigeration cycle. Refrigeration calculations have been carried out through the analysis of T–S and P–H diagrams where coefficient of performance (COP) was obtained as 1.85. The novelty of this article includes the effect and sensitivity analysis of molar flow, pressure drops and temperature on the exergy efficiency and coefficient of performance of the cycle.

Keywords: exergy; Valve; CRP; refrigeration cycle; propane refrigerant; C2+ Recovery; Ethane Recovery;.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
189 Optimal Manufacturing Scheduling for Dependent Details Processing

Authors: Ivan C. Mustakerov, Daniela I. Borissova

Abstract:

The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing schedules. The paper presents an optimization manufacture scheduling approach for dependent details processing with given processing sequences and times on multiple machines. By defining decision variables as start and end moments of details processing it is possible to use straightforward variables restrictions to satisfy different technological requirements and to formulate easy to understand and solve optimization tasks for multiple numbers of details and machines. A case study example is solved for seven base moldings for CNC metalworking machines processed on five different machines with given processing order among details and machines and known processing time-s duration. As a result of linear optimization task solution the optimal manufacturing schedule minimizing the overall processing time is obtained. The manufacturing schedule defines the moments of moldings delivery thus minimizing storage costs and provides mounting due-time satisfaction. The proposed optimization approach is based on real manufacturing plant problem. Different processing schedules variants for different technological restrictions were defined and implemented in the practice of Bulgarian company RAIS Ltd. The proposed approach could be generalized for other job shop scheduling problems for different applications.

Keywords: Optimal manufacturing scheduling, linear programming, metalworking machines production, dependant details processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
188 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: Composite, long fiber reinforced thermoplastics, mechanical properties, dynamic mechanical analysis, time temperature superposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
187 Multi-Criteria Decision Analysis in Planning of Asbestos-Containing Waste Management

Authors: E. Bruno, F. Lacarbonara, M. C. Placentino, D. Gramegna

Abstract:

Environmental decision making, particularly about hazardous waste management, is inherently exposed to a high potential conflict, principally because of the trade-off between sociopolitical, environmental, health and economic factors. The need to plan complex contexts has led to an increasing request for decision analytic techniques as support for the decision process. In this work, alternative systems of asbestos-containing waste management (ACW) in Puglia (Southern Italy) were explored by a multi-criteria decision analysis. In particular, through Analytic Hierarchy Process five alternatives management have been compared and ranked according to their performance and efficiency, taking into account environmental, health and socio-economic aspects. A separated valuation has been performed for different temporal scale. For short period results showed a narrow deviation between the disposal alternatives “mono-material landfill in public quarry" and “dedicate cells in existing landfill", with the best performance of the first one. While for long period “treatment plant to eliminate hazard from asbestos-containing waste" was prevalent, although high energy demand required to achieve the change of crystalline structure. A comparison with results from a participative approach in valuation process might be considered as future development of method application to ACW management.

Keywords: Multi-criteria decision analysis, Hazardous wastemanagement, Asbestos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
186 Utilization of Laser-Ablation Based Analytical Methods for Obtaining Complete Chemical Information of Algae

Authors: Pavel Pořízka, David Prochazka, Karel Novotný, Ota Samek, ZdeněkPilát, Klára Procházková, and Jozef Kaiser

Abstract:

Themain goal of this article is to find efficient methods for elemental and molecular analysis of living microorganisms (algae) under defined environmental conditions and cultivation processes. The overall knowledge of chemical composition is obtained utilizing laser-based techniques, Laser- Induced Breakdown Spectroscopy (LIBS) for acquiring information about elemental composition and Raman Spectroscopy for gaining molecular information, respectively. Algal cells were suspended in liquid media and characterized using their spectra. Results obtained employing LIBS and Raman Spectroscopy techniques will help to elucidate algae biology (nutrition dynamics depending on cultivation conditions) and to identify algal strains, which have the potential for applications in metal-ion absorption (bioremediation) and biofuel industry. Moreover, bioremediation can be readily combined with production of 3rd generation biofuels. In order to use algae for efficient fuel production, the optimal cultivation parameters have to be determinedleading to high production of oil in selected cellswithout significant inhibition of the photosynthetic activity and the culture growth rate, e.g. it is necessary to distinguish conditions for algal strain containing high amount of higher unsaturated fatty acids. Measurements employing LIBS and Raman Spectroscopy were utilized in order to give information about alga Trachydiscusminutus with emphasis on the amount of the lipid content inside the algal cell and the ability of algae to withdraw nutrients from its environment and bioremediation (elemental composition), respectively. This article can serve as the reference for further efforts in describing complete chemical composition of algal samples employing laserablation techniques.

Keywords: Laser-Induced Breakdown Spectroscopy, Raman Spectroscopy, Algae, Algal strains, Bioremediation, Biofuels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
185 Investigation in Physically-Chemical Parameters of in Latvia Harvested Conventional and Organic Triticale Grains

Authors: Solvita Kalnina, Tatjana Rakcejeva, Daiga Kunkulberga, Anda Linina

Abstract:

Triticale is a manmade hybrid of wheat and rye that carries the A and B genome of durum wheat and the R genome of rye. In the scientific literature information about in Latvia harvested organic and conventional triticale grain physically-chemical composition was not found in general. Therefore, the main purpose of the current research was to investigate physically-chemical parameters of in Latvia harvested organic and convectional triticale grains. The research was accomplished on in Year 2012 from State Priekuli Plant Breeding Institute (Latvia) harvested organic and conventional triticale grains: “Dinaro”, “9403-97”, “9405-23” and “9402-3”. In the present research significant differences in chemical composition between organic and conventional triticale grains harvested in Latvia was found. It is necessary to mention that higher 1000 grain weight, bulk density and gluten index was obtained for conventional and organic triticale grain variety “9403-97”. However higher falling number, gluten and protein content was obtained for triticale grain variety “9405-23”.

Keywords: Physically-chemical parameters, technological properties, triticale grains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2682
184 Identifying Dry Years by Using the Dependable Rainfall Index and Its Effects on the Olive Crop in Roudbar, Gilan, South Western of Caspian Sea

Authors: Bahman Ramezani Gourabi

Abstract:

Drought is one of the most important natural disasters which is probable to occur in all regions with completely different climates and in addition to causing death. It results in many economic losses and social consequences. For this reason. Studying the effects and losses caused by drought which include limitation or shortage of agricultural and drinking water resources. Decreased rainfall and increased evapotranspiration. Limited plant growth and decreased agricultural products. Especially those of dry-farming. Lower levels of surface and ground waters and increased immigrations. Etc. in the country is statistical period (1988-2007) for six stations in Roudbar town were used for statistical analysis and calculating humid and dry years. The dependable rainfall index (DRI) was the main method used in this research. Results showed that during the said statistical period and also during the years 1996-1998 and 2007. more than half of the stations had faced drought. With consideration of the conducted studies. Drawing diagrams and comparing the available data with those of dry and humid years it was found that drought affected agricultural products (e.g.olive) in a way that during the year 1996 1996 drought. Olive groves of Roudbar suffered the greatest damages. Whereupon about 70% of the crops were lost.

Keywords: Dependable rainfall, drought, annual rainfall, roudbar, olive, gilan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
183 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena

Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho

Abstract:

To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.

Keywords: Heating element, plugging, rotary heat exchanger, thermal fluid characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
182 Utilization Juice Wastes as Corn Replacement in the Broiler Diet

Authors: Yose Rizal, Maria Endo Mahata, Mira Andriani, Guoyao Wu

Abstract:

An experiment was conducted with 80 unsexed broilers of the Arbor Acress strain to determine the capability of a carrot and fruit juice wastes mixture (carrot, apple, manggo, avocado, orange, melon and Dutch egg plant) in the same proportion for replacing corn in broiler diet. This study involved a completely randomized design (CRD) with 5 treatments (0, 5, 10, 15, and 20% of juice wastes mixture in diets) and 4 replicates per treatment. Diets were isonitrogenous (22% crude protein) and isocaloric (3000 kcal/kg diet). Measured variables were feed consumption, average daily gain, feed conversion, as well as percentages of abdominal fat pad, carcass, digestive organs (liver, pancreas and gizzard), and heart. Data were analyzed by analysis of variance for CRD. Increasing juice wastes mixture levels in diets increased feed consumption (P<0.05) and average daily gain (P<0.01), while improving feed utilization efficiency (P<0.05). These treatments also affected (P<0.05) abdominal fat pad percentage but had no effect (P>0.05) on carcass, liver, pancreas, gizzard or heart percentages. In conclusion, up to 20% of juice wastes mixture could be included for the broiler diet to effectively replace up to 40% corn in the diet.

Keywords: average daily gain, feed consumption, feedconversion, juice waste mixture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
181 PSO Based Weight Selection and Fixed Structure Robust Loop Shaping Control for Pneumatic Servo System with 2DOF Controller

Authors: Randeep Kaur, Jyoti Ohri

Abstract:

This paper proposes a new technique to design a fixed-structure robust loop shaping controller for the pneumatic servosystem. In this paper, a new method based on a particle swarm optimization (PSO) algorithm for tuning the weighting function parameters to design an H∞ controller is presented. The PSO algorithm is used to minimize the infinity norm of the transfer function of the nominal closed loop system to obtain the optimal parameters of the weighting functions. The optimal stability margin is used as an objective in PSO for selecting the optimal weighting parameters; it is shown that the proposed method can simplify the design procedure of H∞ control to obtain optimal robust controller for pneumatic servosystem. In addition, the order of the proposed controller is much lower than that of the conventional robust loop shaping controller, making it easy to implement in practical works. Also two-degree-of-freedom (2DOF) control design procedure is proposed to improve tracking performance in the face of noise and disturbance. Result of simulations demonstrates the advantages of the proposed controller in terms of simple structure and robustness against plant perturbations and disturbances.

Keywords: Robust control, Pneumatic Servosystem, PSO, H∞ control, 2DOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
180 Traffic Congestion on Highways in Nigeria Causes, Effects and Remedies

Authors: Popoola M. O., Abiola S. O., Adeniji W. A.

Abstract:

This study investigates the causes, effects and remedies of traffic congestion which has become a common sight in most highways in Nigeria; Mowe/Ibafo section of the Lagos-Ibadan expressway was used as the case-study. 300 Structured questionnaires were distributed among the road users comprising drivers (Private and Commercial), passengers, pedestrians, traffic officers, church congregations, community leaders, Mowe/Ibafo residents, and other users of the road.

300 questionnaires were given out; the average of 276 well completed returned questionnaires formed the basis of the study and was analyzed by the Relative Importance Index (R.I.I.). The result from the study showed the causes of traffic congestion as inadequate road capacity, poor road pavement, poor traffic management, poor drainage system poor driving habit, poor parking habit, poor design junctions/round-about, presence of heavy trucks, lack of pedestrian facilities, lack of road furniture, lack of parking facilities and others. Effects of road congestion from the study are waste of time, delay movement, stress, accident, inability to forecast travel of time, fuel consumption, road rage, relocation, night driving, and environmental pollution. To drastically reduce these negative effects; there must be provision for adequate parking space, construction of proper drainage, enlarging the width of the road, rehabilitate all roads needing attention, public enlightenment, traffic education, hack down all illegal buildings/shops built on the right of way (ROW), create a separate/alternative root for trucks and heavy vehicles, provision of pedestrian facilities, In-depth training of transport/traffic personnel, ban all form of road trading/hawking, and reduce the number of bus-stop where necessary. It is hoped that this study will become the foundation of further research in the area of improve road traffic management on our major highway.

Keywords: Highways, Congestion, Traffic, Traffic congestion, traffic management, Nigeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12413
179 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data

Authors: Arnaud Nougues

Abstract:

This paper describes a two-stage methodology derived from IMC (Internal Model Control) for tuning a PID (Proportional-Integral-Derivative) controller for levels or other integrating processes in an industrial environment. Focus is ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need of time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary PI (Proportional-Integral) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.

Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 568
178 Effect of Cocoa Pod Ash and Poultry Manure on Soil Properties and Cocoyam Productivity of Nutrient-Depleted Tropical Alfisol

Authors: T. M. Agbede, A. O. Adekiya

Abstract:

An experiment was carried out for three consecutive years at Owo, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of cocoyam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 7.5 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control), arranged in a randomized complete block design with three replications. Results showed that soil amendments significantly increased (p = 0.05) corm and cormel weights and growth of cocoyam, soil and leaf N, P, K, Ca and Mg, soil pH and organic carbon (OC) concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased corm and cormel weights, plant height and leaf area of cocoyam by 40, 39, 42, and 48%, respectively, compared with inorganic fertilizer (NPK) and 13, 12, 15 and 7%, respectively, compared with PM alone. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties compared with NPK and the NSF (control). The mixture of CPA+PM applied at 7.5 t ha-1 was the most effective treatment in improving cocoyam yield and growth parameters, soil and leaf nutrient composition.

Keywords: Cocoa pod ash, cocoyam, poultry manure, soil and leaf nutrient composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
177 Comparison of Different Advanced Oxidation Processes for Degrading 4-Chlorophenol

Authors: M.D. Murcia, M. Gomez, E. Gomez, J.L. Gomez, N. Christofi

Abstract:

The removal efficiency of 4-chlorophenol with different advanced oxidation processes have been studied. Oxidation experiments were carried out using two 4-chlorophenol concentrations: 100 mg L-1 and 250 mg L-1 and UV generated from a KrCl excilamp with (molar ratio H2O2: 4-chlorophenol = 25:1) and without H2O2, and, with Fenton process (molar ratio H2O2:4- chlorophenol of 25:1 and Fe2+ concentration of 5 mg L-1). The results show that there is no significant difference in the 4- chlorophenol conversion when using one of the three assayed methods. However, significant concentrations of the photoproductos still remained in the media when the chosen treatment involves UV without hydrogen peroxide. Fenton process removed all the intermediate photoproducts except for the hydroquinone and the 1,2,4-trihydroxybenzene. In the case of UV and hydrogen peroxide all the intermediate photoproducts are removed. Microbial bioassays were carried out utilising the naturally luminescent bacterium Vibrio fischeri and a genetically modified Pseudomonas putida isolated from a waste treatment plant receiving phenolic waste. The results using V. fischeri show that with samples after degradation, only the UV treatment showed toxicity (IC50 =38) whereas with H2O2 and Fenton reactions the samples exhibited no toxicity after treatment in the range of concentrations studied. Using the Pseudomonas putida biosensor no toxicity could be detected for all the samples following treatment due to the higher tolerance of the organism to phenol concentrations encountered.

Keywords: 4-chlorophenol, Fenton, photodegradation, UV, excilamp.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
176 Effect of Cooling Rate on base Metals Recovery from Copper Matte Smelting Slags

Authors: N. Tshiongo , R K.K. Mbaya , K Maweja, L.C. Tshabalala

Abstract:

Slag sample from copper smelting operation in a water jacket furnace from DRC plant was used. The study intends to determine the effect of cooling in the extraction of base metals. The cooling methods investigated were water quenching, air cooling and furnace cooling. The latter cooling ways were compared to the original as received slag. It was observed that, the cooling rate of the slag affected the leaching of base metals as it changed the phase distribution in the slag and the base metals distribution within the phases. It was also found that fast cooling of slag prevented crystallization and produced an amorphous phase that encloses the base metals. The amorphous slags from the slag dumps were more leachable in acidic medium (HNO3) which leached 46%Cu, 95% Co, 85% Zn, 92% Pb and 79% Fe with no selectivity at pH0, than in basic medium (NH4OH). The leachability was vice versa for the modified slags by quenching in water which leached 89%Cu with a high selectivity as metal extractions are less than 1% for Co, Zn, Pb and Fe at ambient temperature and pH12. For the crystallized slags, leaching of base metals increased with the increase of temperature from ambient temperature to 60°C and decreased at the higher temperature of 80°C due to the evaporation of the ammonia solution used for basic leaching, the total amounts of base metals that were leached in slow cooled slags were very low compared to the quenched slag samples.

Keywords: copper slag, leaching, amorphous, cooling rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3757
175 Analysis of Combustion, Performance and Emission Characteristics of Turbocharged LHR Extended Expansion DI Diesel Engine

Authors: Mohd.F.Shabir, P. Tamilporai, B. Rajendra Prasath

Abstract:

The fundamental aim of extended expansion concept is to achieve higher work done which in turn leads to higher thermal efficiency. This concept is compatible with the application of turbocharger and LHR engine. The Low Heat Rejection engine was developed by coating the piston crown, cylinder head inside with valves and cylinder liner with partially stabilized zirconia coating of 0.5 mm thickness. Extended expansion in diesel engines is termed as Miller cycle in which the expansion ratio is increased by reducing the compression ratio by modifying the inlet cam for late inlet valve closing. The specific fuel consumption reduces to an appreciable level and the thermal efficiency of the extended expansion turbocharged LHR engine is improved. In this work, a thermodynamic model was formulated and developed to simulate the LHR based extended expansion turbocharged direct injection diesel engine. It includes a gas flow model, a heat transfer model, and a two zone combustion model. Gas exchange model is modified by incorporating the Miller cycle, by delaying inlet valve closing timing which had resulted in considerable improvement in thermal efficiency of turbocharged LHR engines. The heat transfer model, calculates the convective and radiative heat transfer between the gas and wall by taking into account of the combustion chamber surface temperature swings. Using the two-zone combustion model, the combustion parameters and the chemical equilibrium compositions were determined. The chemical equilibrium compositions were used to calculate the Nitric oxide formation rate by assuming a modified Zeldovich mechanism. The accuracy of this model is scrutinized against actual test results from the engine. The factors which affect thermal efficiency and exhaust emissions were deduced and their influences were discussed. In the final analysis it is seen that there is an excellent agreement in all of these evaluations.

Keywords: Low Heat Rejection, Miller cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
174 Exporting Physiochemical Changes during the Fermentation of Aloe Vera

Authors: Kyaw Hla Myint, Phyoe Wai Htun

Abstract:

Aloe Vera is a short-stemmed succulent plant which is commonly used in Myanmar traditional medicine. A. vera gel was also used as food addictive. This study aims to improve the Myanmar folk medicine to a functional beverage. In this research, Aloe vera was fermented with Saccharomyces cerevisiae for 6 months. Three different processes were carried out. Process I contains A. vera 10%, sugar 30%, water 50%, and starter culture 10%, process II contains A. vera 10%, sugar 15%, honey 15%, and water 50%, starter culture 10%; process III contains A. vera 10%, honey 30%, water 50%, starter culture 10%. During wine fermentation, the wine parameters such as alcohol content, total soluble solid (ºBrix), pH, color and cell population were analyzed. After 30 days of fermentation, total cell population remained 2.8x106 in P-I, P-II and 3.2x106 in P-III. Total soluble solid content dropped to 15.8 in P-I, P-II and 15.7 in P-III. After 30 days, clear wine was transferred to other vassals for racking. After 6 months of racking, microbial population reached under detectable level and alcohol content was round about 11% but not significantly different among these processes. P-II was found to have the highest color intensity at 450 nm and it got the most taster satisfaction when sensory evaluation was carried out using five hedonic scales after 6 month of racking.

Keywords: Aloe vera, fermentation, S. cerevisiae, functional beverage, folk medicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
173 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: Lithium-Ion batteries, genetic algorithm optimization, battery aging test, and parameter identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
172 GC and GCxGC-MS Composition of Volatile Compounds from Carum carvi by Using Techniques Assisted by Microwaves

Authors: F. Benkaci-Ali, R. Mékaoui, G. Scholl, G. Eppe

Abstract:

The new methods as accelerated steam distillation assisted by microwave (ASDAM) is a combination of microwave heating and steam distillation, performed at atmospheric pressure at very short extraction time. Isolation and concentration of volatile compounds are performed by a single stage. (ASDAM) has been compared with (ASDAM) with cryogrinding of seeds (CG) and a conventional technique, hydrodistillation assisted by microwave (HDAM), hydro-distillation (HD) for the extraction of essential oil from aromatic herb as caraway and cumin seeds. The essential oils extracted by (ASDAM) for 1 min were quantitatively (yield) and qualitatively (aromatic profile) no similar to those obtained by ASDAM-CG (1 min) and HD (for 3 h). The accelerated microwave extraction with cryogrinding inhibits numerous enzymatic reactions as hydrolysis of oils. Microwave radiations constitute the adequate mean for the extraction operations from the yields and high content in major component majority point view, and allow to minimise considerably the energy consumption, but especially heating time too, which is one of essential parameters of artifacts formation. The ASDAM and ASDAM-CG are green techniques and yields an essential oil with higher amounts of more valuable oxygenated compounds comparable to the biosynthesis compounds, and allows substantial savings of costs, in terms of time, energy and plant material.

Keywords: Microwave, steam distillation, caraway, cumin, cryogrinding, GC-MS, GCxGC-MS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029