%0 Journal Article
	%A N. Tshiongo  and  R K.K. Mbaya  and  K Maweja and  L.C. Tshabalala
	%D 2010
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 46, 2010
	%T Effect of Cooling Rate on base Metals Recovery from Copper Matte Smelting Slags
	%U https://publications.waset.org/pdf/15585
	%V 46
	%X Slag sample from copper smelting operation in a
water jacket furnace from DRC plant was used. The study intends to
determine the effect of cooling in the extraction of base metals. The
cooling methods investigated were water quenching, air cooling and
furnace cooling. The latter cooling ways were compared to the
original as received slag. It was observed that, the cooling rate of the
slag affected the leaching of base metals as it changed the phase
distribution in the slag and the base metals distribution within the
phases. It was also found that fast cooling of slag prevented
crystallization and produced an amorphous phase that encloses the
base metals. The amorphous slags from the slag dumps were more
leachable in acidic medium (HNO3) which leached 46%Cu, 95% Co,
85% Zn, 92% Pb and 79% Fe with no selectivity at pH0, than in
basic medium (NH4OH). The leachability was vice versa for the
modified slags by quenching in water which leached 89%Cu with a
high selectivity as metal extractions are less than 1% for Co, Zn, Pb
and Fe at ambient temperature and pH12. For the crystallized slags,
leaching of base metals increased with the increase of temperature
from ambient temperature to 60°C and decreased at the higher
temperature of 80°C due to the evaporation of the ammonia solution
used for basic leaching, the total amounts of base metals that were
leached in slow cooled slags were very low compared to the
quenched slag samples.
	%P 649 - 653