WASET
	%0 Journal Article
	%A M.D. Murcia and  M. Gomez and  E. Gomez and  J.L. Gomez and  N. Christofi
	%D 2009
	%J International Journal of Chemical and Molecular Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 31, 2009
	%T Comparison of Different Advanced Oxidation Processes for Degrading 4-Chlorophenol
	%U https://publications.waset.org/pdf/5551
	%V 31
	%X The removal efficiency of 4-chlorophenol with
different advanced oxidation processes have been studied. Oxidation
experiments were carried out using two 4-chlorophenol
concentrations: 100 mg L-1 and 250 mg L-1 and UV generated from a
KrCl excilamp with (molar ratio H2O2: 4-chlorophenol = 25:1) and
without H2O2, and, with Fenton process (molar ratio H2O2:4-
chlorophenol of 25:1 and Fe2+ concentration of 5 mg L-1).
The results show that there is no significant difference in the 4-
chlorophenol conversion when using one of the three assayed
methods. However, significant concentrations of the photoproductos
still remained in the media when the chosen treatment involves UV
without hydrogen peroxide. Fenton process removed all the
intermediate photoproducts except for the hydroquinone and the
1,2,4-trihydroxybenzene. In the case of UV and hydrogen peroxide
all the intermediate photoproducts are removed.
Microbial bioassays were carried out utilising the naturally
luminescent bacterium Vibrio fischeri and a genetically modified
Pseudomonas putida isolated from a waste treatment plant receiving
phenolic waste. The results using V. fischeri show that with samples
after degradation, only the UV treatment showed toxicity (IC50 =38)
whereas with H2O2 and Fenton reactions the samples exhibited no
toxicity after treatment in the range of concentrations studied. Using
the Pseudomonas putida biosensor no toxicity could be detected for
all the samples following treatment due to the higher tolerance of the
organism to phenol concentrations encountered.
	%P 352 - 356