Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils
Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente
Abstract:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.Keywords: Artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L, Schinus terebinthifolius raddi.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1107037
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426References:
[1] F. Bakkali, S. Averbeck, D. Averbeck, M. Idaomar, “Biological effects of essential oils – A review,” Food Chem. Toxicol., vol. 46, pp. 446– 475, 2008.
[2] R. Amorati, M. C. Foti, L. Valgimigli, “Antioxidant activity of essential oils,” J. Agric. Food Chem., vol. 61, pp. 10835–10847, 2013.
[3] S. Burt, “Essential oils: their antibacterial properties and potential applications in foods – a review,” Int J. Food Microbiol, vol. 94, pp. 223–253, 2004.
[4] E. A. Hayouni, I. Chraief, M. Abedrabba, M. Bouix, J. Leveau, H. Mohammed, M. Hamdi, “Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat,” Int. J. Food Microbiol, vol. 125, pp. 242–251, 2008.
[5] H Bendaoud, M. Romdhane, J.P. Souchard, S. Cazaux, J. Bouajila, “Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils,” J. Food Science, vol. 75, pp. 466–472, 2010.
[6] M. R. Martins, S. Arantes, F. Candeias, M. T. Tinoco, J. Cruz-Morais, “Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils,” J. Ethnopharm, vol. 151, pp. 485–492, 2014.
[7] V. Gomes, G. Agostini, F. Agostini, A. C. Atti dos Santos, M. Rossato, “Variation in the essential oils composition in Brazilian populations of Schinus molle L. (Anacardiaceae),” Biochem. Syst. Ecol., vol. 48, 222– 227, 2013.
[8] C. Díaz, S. Quesada, O. Brenes, G. Aguilar, J. F. Cicció, “Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumor cell lines,” Nat. Prod. Res. Letters, vol. 22, nº17, pp. 1521–1534, 2008.
[9] K. F. El-Massry, A. H. Ghorab, H. A. Shaaban, T. Shibamoto, “Chemical compositions and antioxidant/ antimicrobial activities of various samples prepared from Schinus terebinthifolius leaves cultivated in Egypt,” J. Agric. Food Chem., vol. 57, pp. 5265–5270, 2009.
[10] J. Duke, Handbook of medicinal herbs, 2nd ed. Boca Raton, Florida: CRC Press, 2002.
[11] A. C. Atti dos Santos, M. Rossato, L. A. Serafini, M. Bueno, L. B. Crippa, V. C. Sartori, E. Dellacassa, P. Moyna, “Antifungal effect of Schinus molle L., Anacardiaceae, and Schinus terebinthifolius Raddi, Anacardiaceae, essential oils of Rio Grande do Sul”. Braz. J. Pharmacog. vol. 20, pp. 154–159, 2010.
[12] O. Deveci, A. Sukan, N. Tuzun, E. E. H. Kocabas, “Chemical composition, repellent and antimicrobial activity of Schinus molle L.,” J. Med. Plants Res., vol. 4, nº 21, pp. 2211–2216, 2010.
[13] E. Simionatto, M. O. Chagas, M. T. L. P. Peres, S. C. Hess, C. B. Silva, N. Ré-Poppi, S. S. Gebara, J. Corsino, A. F Morel,.C. Z. Stuker, M. F. C Matos, J. E. Carvalho, “Chemical composition and biological activities of leaves essential oil from Schinus molle (Anacardiaceae),” J. Ess. Oil Bear. Pl., vol. 14, pp. 590–599, 2011.
[14] M. C. Bigliani, V. Rossetti, E. Grondona, S. Lo Presti, P. M. Paglini, V. Rivero, M. P. Zunino, A. A. Ponce, “Chemical compositions and properties of Schinus areira L. essential oil on airway inflammation and cardiovascular system of mice and rabbits,” Food Chem. Toxicol., vol. 50, pp. 2282–2288, 2012.
[15] J. Neves, “A logic interpreter to handle time and negation in logic data bases,” in Proceedings of the 1984 annual conference of the ACM on the fifth generation challenge, R. L. Muller and J. J. Pottmyer Eds. New York: Association for Computing Machinery, 1984, pp. 50–54.
[16] J. Neves, J. Machado, C. Analide, A. Abelha and L. Brito, “The halt condition in genetic programming,” in Progress in Artificial Intelligence – Lecture Notes in Computer Science, vol 4874, J. Neves, M. F. Santos and J. Machado Eds. Heidelberg: Springer, 2007, pp. 160–169.
[17] P. Cortez, M. Rocha, J. Neves, “Evolving Time Series Forecasting ARMA Models,” Journal of Heuristics, vol. 10, pp. 415–429, 2004.
[18] A. Kakas, R. Kowalski and F. Toni “The role of abduction in logic programming,” in Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, D. Gabbay, C. Hogger and I. Robinson, Eds., Oxford: Oxford University Press, 1998, pp. 235–324.
[19] M. Gelfond and V. Lifschitz, “The stable model semantics for logic programming,” in Logic Programming – Proceedings of the Fifth International Conference and Symposium, R. Kowalski and K. Bowen, Eds. Cambridge: MIT Press, 1988, pp. 1070–1080.
[20] L. Pereira and H. Anh, “Evolution prospection,” in New Advances in Intelligent Decision Technologies – Results of the First KES International Symposium IDT 2009, K. Nakamatsu, G. Phillips-Wren, L. Jain and R. Howlett Eds. Studies in Computational Intelligence, vol. 199, Berlin: Springer, 2009, pp. 51–64.
[21] J. Halpern, Reasoning about uncertainty. Massachusetts: MIT Press, 2005.
[22] B. Kovalerchuck and G. Resconi, “Agent-based uncertainty logic network,” in Proceedings of the IEEE International Conference on Fuzzy Systems – FUZZ–IEEE 2010, Barcelona, Spain, 2010, pp. 596–603.
[23] P. Lucas, “Quality checking of medical guidelines through logical abduction,” in Proceedings of AI–2003 (Research and Developments in Intelligent Systems XX), F. Coenen, A. Preece and A. Mackintosh, Eds. London: Springer, 2003, pp. 309–321.
[24] J. Machado, A. Abelha, P. Novais, J. Neves and J. Neves, “Quality of service in healthcare units,” International Journal of Computer Aided Engineering and Technology, vol. 2, pp. 436–449, 2010.
[25] Y. Liu and M. Sun, “Fuzzy optimization BP neural network model for pavement performance assessment,” in Proceedings of the 2007 IEEE International Conference on Grey Systems and Intelligent Services, Nanjing, China, 2007, pp. 18–20.
[26] A. T. Caldeira, M. R. Martins, M. J. Cabrita, C. Ambrósio, J. M. Arteiro, J. Neves and H. Vicente, “Aroma compounds prevision using artificial neural networks influence of newly indigenous Saccharomyces SPP in white wine produced with Vitis vinifera Cv Siria,” in FOODSIM 2010, V. Cadavez and D. Thiel Eds. Ghent: Eurosis – ETI Publication, 2010, pp. 33–40.
[27] H. Vicente, S. Dias, A. Fernandes, A. Abelha, J. Machado, and J. Neves, “Prediction of the Quality of Public Water Supply using Artificial Neural Networks,” Journal of Water Supply: Research and Technology – AQUA, vol. 61, pp. 446–459, 2012.
[28] H. Vicente, J. C. Roseiro, J. M. Arteiro, J. Neves and A. T. Caldeira, “Prediction of bioactive compounds activity against wood contaminant fungi using artificial neural networks,” Canadian Journal of Forest Research, vol. 43, pp. 985–992, 2013.
[29] D. Carneiro, P. Novais, F. Andrade, J. Zeleznikow, J. Neves, “Using case-based reasoning and principled negotiation to provide decision support for dispute resolution,” Knowledge and Information Systems, vol. 36, 789–826, 2013.
[30] R. Mendes, J. Kennedy, J. Neves, “The fully informed particle swarm: simpler, maybe better,” IEEE Transactions on Evolutionary Computation, vol. 8, 204–210, 2004.