Search results for: imbalanced learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2061

Search results for: imbalanced learning

711 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle

Authors: Babesse Saad, Ameddah Djameleddine

Abstract:

In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.

Keywords: Rollover, single unit heavy vehicle, neural networks, nonlinear side force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
710 Meta-Classification using SVM Classifiers for Text Documents

Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. In this paper, we investigated three approaches to build a meta-classifier in order to increase the classification accuracy. The basic idea is to learn a metaclassifier to optimally select the best component classifier for each data point. The experimental results show that combining classifiers can significantly improve the accuracy of classification and that our meta-classification strategy gives better results than each individual classifier. For 7083 Reuters text documents we obtained a classification accuracies up to 92.04%.

Keywords: Meta-classification, Learning with Kernels, Support Vector Machine, and Performance Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
709 SIPINA Induction Graph Method for Seismic Risk Prediction

Authors: B. Selma

Abstract:

The aim of this study is to test the feasibility of SIPINA method to predict the harmfulness parameters controlling the seismic response. The approach developed takes into consideration both the focal depth and the peak ground acceleration. The parameter to determine is displacement. The data used for the learning of this method and analysis nonlinear seismic are described and applied to a class of models damaged to some typical structures of the existing urban infrastructure of Jassy, Romania. The results obtained indicate an influence of the focal depth and the peak ground acceleration on the displacement.

Keywords: SIPINA method, seism, focal depth, peak ground acceleration, displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
708 Comparing Test Equating by Item Response Theory and Raw Score Methods with Small Sample Sizes on a Study of the ARTé: Mecenas Learning Game

Authors: Steven W. Carruthers

Abstract:

The purpose of the present research is to equate two test forms as part of a study to evaluate the educational effectiveness of the ARTé: Mecenas art history learning game. The researcher applied Item Response Theory (IRT) procedures to calculate item, test, and mean-sigma equating parameters. With the sample size n=134, test parameters indicated “good” model fit but low Test Information Functions and more acute than expected equating parameters. Therefore, the researcher applied equipercentile equating and linear equating to raw scores and compared the equated form parameters and effect sizes from each method. Item scaling in IRT enables the researcher to select a subset of well-discriminating items. The mean-sigma step produces a mean-slope adjustment from the anchor items, which was used to scale the score on the new form (Form R) to the reference form (Form Q) scale. In equipercentile equating, scores are adjusted to align the proportion of scores in each quintile segment. Linear equating produces a mean-slope adjustment, which was applied to all core items on the new form. The study followed a quasi-experimental design with purposeful sampling of students enrolled in a college level art history course (n=134) and counterbalancing design to distribute both forms on the pre- and posttests. The Experimental Group (n=82) was asked to play ARTé: Mecenas online and complete Level 4 of the game within a two-week period; 37 participants completed Level 4. Over the same period, the Control Group (n=52) did not play the game. The researcher examined between group differences from post-test scores on test Form Q and Form R by full-factorial Two-Way ANOVA. The raw score analysis indicated a 1.29% direct effect of form, which was statistically non-significant but may be practically significant. The researcher repeated the between group differences analysis with all three equating methods. For the IRT mean-sigma adjusted scores, form had a direct effect of 8.39%. Mean-sigma equating with a small sample may have resulted in inaccurate equating parameters. Equipercentile equating aligned test means and standard deviations, but resultant skewness and kurtosis worsened compared to raw score parameters. Form had a 3.18% direct effect. Linear equating produced the lowest Form effect, approaching 0%. Using linearly equated scores, the researcher conducted an ANCOVA to examine the effect size in terms of prior knowledge. The between group effect size for the Control Group versus Experimental Group participants who completed the game was 14.39% with a 4.77% effect size attributed to pre-test score. Playing and completing the game increased art history knowledge, and individuals with low prior knowledge tended to gain more from pre- to post test. Ultimately, researchers should approach test equating based on their theoretical stance on Classical Test Theory and IRT and the respective  assumptions. Regardless of the approach or method, test equating requires a representative sample of sufficient size. With small sample sizes, the application of a range of equating approaches can expose item and test features for review, inform interpretation, and identify paths for improving instruments for future study.

Keywords: Effectiveness, equipercentile equating, IRT, learning games, linear equating, mean-sigma equating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
707 Case Studies in Three Domains of Learning: Cognitive, Affective, Psychomotor

Authors: Zeinabsadat Haghshenas

Abstract:

Bloom’s Taxonomy has been changed during the years. The idea of this writing is about the revision that has happened in both facts and terms. It also contains case studies of using cognitive Bloom’s taxonomy in teaching geometric solids to the secondary school students, affective objectives in a creative workshop for adults and psychomotor objectives in fixing a malfunctioned refrigerator lamp. There is also pointed to the important role of classification objectives in adult education as a way to prevent memory loss.

Keywords: Adult education, affective domain, cognitive domain, memory loss, psychomotor domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7193
706 Evolutionary Computing Approach for the Solution of Initial value Problems in Ordinary Differential Equations

Authors: A. Junaid, M. A. Z. Raja, I. M. Qureshi

Abstract:

An evolutionary computing technique for solving initial value problems in Ordinary Differential Equations is proposed in this paper. Neural network is used as a universal approximator while the adaptive parameters of neural networks are optimized by genetic algorithm. The solution is achieved on the continuous grid of time instead of discrete as in other numerical techniques. The comparison is carried out with classical numerical techniques and the solution is found with a uniform accuracy of MSE ≈ 10-9 .

Keywords: Neural networks, Unsupervised learning, Evolutionary computing, Numerical methods, Fitness evaluation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
705 Efficacy of Selected Mobility Exercises and Participation in Special Games on Psychomotor Abilities, Functional Abilities and Game Performance among Intellectually Disabled Children of Under 14 Age

Authors: J. Samuel Jesudoss

Abstract:

The purpose of the study was to find out the efficacy of selected mobility exercises and participation in special games on psychomotor abilities, functional abilities and skill performance among intellectually disabled children of age group under 14. Thirty male students who were studying in Balar Kalvi Nilayam and YMCA College Special School, Chennai, acted as subjects for the study. They were only mild and moderate in intellectual disability. These students did not undergo any special training or coaching programme apart from their regular routine physical activity classes as a part of the curriculum in the school. They were attached at random, based on age in which 30 belonged to under 14 age group, which was divided into three equal group of ten for each experimental treatment. 10 students (Treatment group I) underwent calisthenics and special games participation, 10 students (Treatment group II) underwent aquatics and special games participation, 10 students (Treatment group III) underwent yoga and special games participation. The subjects were tested on selected criterion variables prior (pre test) and after twelve weeks of training (post test). The pre and post test data collected from three groups on functional abilities(self care, learning, capacity for independent living), psychomotor variables(static balance, eye hand coordination, simple reaction time test) and skill performance (bocce skill, badminton skill, table tennis skill) were statistically examined for significant difference, by applying the analysis ANACOVA. Whenever an 'F' ratio for adjusted test was found to be significant for adjusted post test means, Scheffe-s test was followed as a post-hoc test to determine which of the paired mean differences was significant. The result of the study showed that among under 14 age groups there was a significant improvement on selected criterion variables such as, Balance, Coordination, self-care and learning and also in Bocce, Badminton & Table Tennis skill performance, due to mobility exercises and participation in special games. However there were no significant differences among the groups.

Keywords: Functional ability, intellectually disabled, Mobility exercises, Psychomotor ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
704 Web-Based Tools to Increase Public Understanding of Nuclear Technology and Food Irradiation

Authors: Denise Levy, Anna Lucia C. H. Villavicencio

Abstract:

Food irradiation is a processing and preservation technique to eliminate insects and parasites and reduce disease-causing microorganisms. Moreover, the process helps to inhibit sprouting and delay ripening, extending fresh fruits and vegetables shelf-life. Nevertheless, most Brazilian consumers seem to misunderstand the difference between irradiated food and radioactive food and the general public has major concerns about the negative health effects and environmental contamination. Society´s judgment and decision making are directly linked to perceived benefits and risks. The web-based project entitled ‘Scientific information about food irradiation: Internet as a tool to approach science and society’ was created by the Nuclear and Energetic Research Institute (IPEN), in order to offer an interdisciplinary approach to science education, integrating economic, ethical, social and political aspects of food irradiation. This project takes into account that, misinformation and unfounded preconceived ideas impact heavily on the acceptance of irradiated food and purchase intention by the Brazilian consumer. Taking advantage of the potential value of the Internet to enhance communication and education among general public, a research study was carried out regarding the possibilities and trends of Information and Communication Technologies among the Brazilian population. The content includes concepts, definitions and Frequently Asked Questions (FAQ) about processes, safety, advantages, limitations and the possibilities of food irradiation, including health issues, as well as its impacts on the environment. The project counts on eight self-instructional interactive web courses, situating scientific content in relevant social contexts in order to encourage self-learning and further reflections. Communication is a must to improve public understanding of science. The use of information technology for quality scientific divulgation shall contribute greatly to provide information throughout the country, spreading information to as many people as possible, minimizing geographic distances and stimulating communication and development.

Keywords: Food irradiation, multimedia learning tools, nuclear science, society and education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
703 Modeling of Crude Oil Blending via Discrete-Time Neural Networks

Authors: Xiaoou Li, Wen Yu

Abstract:

Crude oil blending is an important unit operation in petroleum refining industry. A good model for the blending system is beneficial for supervision operation, prediction of the export petroleum quality and realizing model-based optimal control. Since the blending cannot follow the ideal mixing rule in practice, we propose a static neural network to approximate the blending properties. By the dead-zone approach, we propose a new robust learning algorithm and give theoretical analysis. Real data of crude oil blending is applied to illustrate the neuro modeling approach.

Keywords: Neural networks, modeling, stability, crude oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
702 Virtual Speaking Head for Hearing Impaired Students

Authors: Eva Pajorová, Ladislav Hluchý

Abstract:

Developed tool is one of system tools for easier access to various scientific areas and real time interactive learning between lecturer and for hearing impaired students. There is no demand for the lecturer to know Sign Language (SL). Instead, the new software tools will perform the translation of the regular speech into SL, after which it will be transferred to the student. On the other side, the questions of the student (in SL) will be translated and transferred to the lecturer in text or speech. One of those tools is presented tool. It-s too for developing the correct Speech Visemes as a root of total communication method for hearing impared students.

Keywords: Impared people, sing language, communication methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
701 Students- uses of Wiki in Teacher Education: A Statistical Analysis

Authors: Said Hadjerrouit

Abstract:

Wikis are considered to be part of Web 2.0 technologies that potentially support collaborative learning and writing. Wikis provide opportunities for multiple users to work on the same document simultaneously. Most wikis have also a page for written group discussion. Nevertheless, wikis may be used in different ways depending on the pedagogy being used, and the constraints imposed by the course design. This work explores students- uses of wiki in teacher education. The analysis is based on a taxonomy for classifying students- activities and actions carried out on the wiki. The article also discusses the implications for using wikis as collaborative writing tools in teacher education.

Keywords: Behaviorism, collaborative writing, socioconstructivism, taxonomy, web 2.0 technology, wiki

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
700 Learning and Evaluating Possibilistic Decision Trees using Information Affinity

Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi

Abstract:

This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.

Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
699 The Role of Creative Thinking in Science Education

Authors: Jindriska Svobodova, Jan Novotny

Abstract:

A teacher’s attitude to creativity plays an essential role in the thinking development of his/her students. The purpose of this study is to understand if a science teacher's personal creativity can modify his/her ability to produce various kinds of questions. This research used an education activity based on cosmic sketches and pictures by K.E. Tsiolkovsky, the founder of astronautics, to explore if any relationship between individual creativity and the asking questions skill exists. As a screening instrument, which allows an assessment of the respondent's creative potential, a common test of creative thinking was used. The results of the creativity test and the diversity of the questions are mentioned.

Keywords: Science education, active learning, physics teaching, creativity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
698 Extracting Attributes for Twitter Hashtag Communities

Authors: Ashwaq Alsulami, Jianhua Shao

Abstract:

Various organisations often need to understand discussions on social media, such as what trending topics are and characteristics of the people engaged in the discussion. A number of approaches have been proposed to extract attributes that would characterise a discussion group. However, these approaches are largely based on supervised learning, and as such they require a large amount of labelled data. We propose an approach in this paper that does not require labelled data, but rely on lexical sources to detect meaningful attributes for online discussion groups. Our findings show an acceptable level of accuracy in detecting attributes for Twitter discussion groups.

Keywords: Attributed community, attribute detection, community, social network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 513
697 Extended Least Squares LS–SVM

Authors: József Valyon, Gábor Horváth

Abstract:

Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they eliminate certain crucial questions involved by neural network construction. The main drawback of standard SVM is its high computational complexity, therefore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. In this paper we present an extended view of the Least Squares Support Vector Regression (LS–SVR), which enables us to develop new formulations and algorithms to this regression technique. Based on manipulating the linear equation set -which embodies all information about the regression in the learning process- some new methods are introduced to simplify the formulations, speed up the calculations and/or provide better results.

Keywords: Function estimation, Least–Squares Support VectorMachines, Regression, System Modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
696 SDVAR Algorithm for Detecting Fraud in Telecommunications

Authors: Fatimah Almah Saaid, Darfiana Nur, Robert King

Abstract:

This paper presents a procedure for estimating VAR using Sequential Discounting VAR (SDVAR) algorithm for online model learning to detect fraudulent acts using the telecommunications call detailed records (CDR). The volatility of the VAR is observed allowing for non-linearity, outliers and change points based on the works of [1]. This paper extends their procedure from univariate to multivariate time series. A simulation and a case study for detecting telecommunications fraud using CDR illustrate the use of the algorithm in the bivariate setting.

Keywords: Telecommunications Fraud, SDVAR Algorithm, Multivariate time series, Vector Autoregressive, Change points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
695 Data Preprocessing for Supervised Leaning

Authors: S. B. Kotsiantis, D. Kanellopoulos, P. E. Pintelas

Abstract:

Many factors affect the success of Machine Learning (ML) on a given task. The representation and quality of the instance data is first and foremost. If there is much irrelevant and redundant information present or noisy and unreliable data, then knowledge discovery during the training phase is more difficult. It is well known that data preparation and filtering steps take considerable amount of processing time in ML problems. Data pre-processing includes data cleaning, normalization, transformation, feature extraction and selection, etc. The product of data pre-processing is the final training set. It would be nice if a single sequence of data pre-processing algorithms had the best performance for each data set but this is not happened. Thus, we present the most well know algorithms for each step of data pre-processing so that one achieves the best performance for their data set.

Keywords: Data mining, feature selection, data cleaning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6098
694 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
693 Matrix Completion with Heterogeneous Observation Cost Using Sparsity-Number of Column-Space

Authors: Ilqar Ramazanli

Abstract:

The matrix completion problem has been studied broadly under many underlying conditions. In many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but, within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.

Keywords: Matrix completion, adaptive learning, heterogeneous cost, Matroid optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499
692 Author's Approach to the Problem of Correctional Speech Therapy with Children Suffering from Alalia

Authors: Е. V. Kutsina, S. A. Tarasova

Abstract:

In this article we present a methodology which enables preschool and primary school unlanguaged children to remember words, phrases and texts with the help of graphic signs - letters, syllables and words. Reading for a child becomes a support for speech development. Teaching is based on the principle "from simple to complex", "a letter - a syllable - a word - a proposal - a text." Availability of multi-level texts allows using this methodology for working with children who have different levels of speech development.

Keywords: Alalia, analytic-synthetic method, development of coherent speech, formation of vocabulary, learning to read, , sentence formation, three-level stories, unlanguaged children.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
691 Role of ICT and Wage Inequality in Organization

Authors: Shoji Katagiri

Abstract:

This study deals with wage inequality in organization and shows the relationship between ICT and wage in organization. To do so, we incorporate ICT’s factors in organization into our model. ICT’s factors are efficiencies of Enterprise Resource Planning (ERP), Computer Assisted Design/Computer Assisted Manufacturing (CAD/CAM), and NETWORK. The improvement of ICT’s factors decrease the learning cost to solve problem pertaining to the hierarchy in organization. The improvement of NETWORK increases the wage inequality within workers and decreases within managers and entrepreneurs. The improvements of CAD/CAM and ERP increases the wage inequality within all agent, and partially increase it between the agents in hierarchy.

Keywords: Endogenous economic growth, ICT, inequality, capital accumulation, technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
690 A Robotic Cube to Preschool Children for Acquiring the Mathematical and Colours Concepts

Authors: Ahmed Amin Mousa, Tamer M. Ismail, M. Abd El Salam

Abstract:

This work presents a robot called Conceptual Robotic Cube, CR-Cube. The robot can be used as an educational tool for children from the age of three. It has a cube shape attached with a camera colours sensor. In addition, it contains four wheels to move smoothly. The researchers prepared a questionnaire to measure the efficiency of the robot. The design and the questionnaire was presented to 11 experts who agreed that the robot is appropriate for learning numbering and colours for preschool children.

Keywords: CR-Cube, robotic cube, conceptual robot, conceptual cube, colour concept, early childhood education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
689 Good Practices in the Development of the Erasmus Mundus Master program in Color in Informatics and Media Technology

Authors: J. Hardeberg, J. Hernandez-Andrès, J. L. Nieves, M. Hauta-Kasari, J. Parkkinen, A. Trémeau

Abstract:

The main objective of this paper is to identify and disseminate good practice in quality assurance and enhancement as well as in teaching and learning at master level. This paper focuses on the experience of the Erasmus Mundus Master program CIMET (Color in Informatics and Media Technology). Amongst topics covered, we discuss the adjustments necessary to a curriculum designed for excellent international students and their preparation for a global labor market.

Keywords: Good practice, internal quality systems, innovationsin curriculum design, challenges of internationalization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
688 Ranking - Convex Risk Minimization

Authors: Wojciech Rejchel

Abstract:

The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.

Keywords: Convex loss function, empirical risk minimization, empirical process, U-process, boosting, euclidean family.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
687 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2799
686 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks

Authors: Yuichi Masukake, Yoshihisa Ishida

Abstract:

In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.

Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
685 Classification Influence Index and its Application for k-Nearest Neighbor Classifier

Authors: Sejong Oh

Abstract:

Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.

Keywords: accuracy, classification, dataset, data preprocessing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
684 Teaching Students Collaborative Requirements Engineering: Case Study of Red:Wire

Authors: Dagmar Monett, Sven-Erik Kujat, Marvin Hartmann

Abstract:

This paper discusses the use of a template-based approach for documenting high-quality requirements as part of course projects in an undergraduate Software Engineering course. In order to ease some of the Requirements Engineering activities that are performed when defining requirements by using the template, a new CASE tool, RED:WIRE, was first developed and later tested by students attending the course. Two questionnaires were conceived around a study that aims to analyze the new tool’s learnability as well as other obtained results concerning its usability in particular and the Requirements Engineering skills developed by the students in general.

Keywords: CASE tool, collaborative learning, requirements engineering, undergraduate teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
683 Identification of the Causes of Construction Delay in Malaysia

Authors: N. Hamzah, M.A. Khoiry, I. Arshad, W.H.W. Badaruzzaman, N. M. Tawil

Abstract:

Construction delay is unavoidable in developing countries including Malaysia. It is defined as time overrun or extension of time for completion of a project. The purpose of the study is to determine the causes of delay in Malaysian construction industries based on previous worldwide research. The field survey conducted includes the experienced developers, consultants and contractors in Malaysia. 34 causes of the construction delay have been determined and 24 have been selected using the Rasch model analysis. The analysis result will be used as the baseline for the next research to find the causes of delay in the Malaysian construction industry taking place in Malaysian higher learning institutions.

Keywords: Causes of construction delay, construction projects, Malaysian construction industry, Rasch model analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7575
682 Information Fusion for Identity Verification

Authors: Girija Chetty, Monica Singh

Abstract:

In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation of the proposed identification scheme on a publicly available database [2] showed that the fusion of face and gait cues in joint PCA-LDA space turns out to be a powerful method for capturing the inherent multimodality in walking gait patterns, and at the same time discriminating the person identity..

Keywords: Biometrics, gait recognition, PCA, LDA, Eigenface, Fisherface, Multivariate Gaussian Classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779