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Abstract—The matrix completion problem has been studied
broadly under many underlying conditions. In many real-life
scenarios, we could expect elements from distinct columns or distinct
positions to have a different cost. In this paper, we explore this
generalization under adaptive conditions. We approach the problem
under two different cost models. The first one is that entries from
different columns have different observation costs, but, within the
same column, each entry has a uniform cost. The second one is any
two entry has different observation cost, despite being the same or
different columns. We provide complexity analysis of our algorithms
and provide tightness guarantees.

Keywords—Matrix completion, adaptive learning, heterogeneous
cost, Matroid optimization.

I. INTRODUCTION

MATRIX completion and compressed sensing has gained

attention of machine learning and signal processing

communities recently. This attention particularly increased

since modern data analysis gained research attention and

low-rank structures has started to be studied in detail.

Announcement of Netflix Prize problem has especially

triggered these studies and many researchers started studying

underlying structure of real-life datasets and their singular

value decomposition. One of the earliest work in this field is

due to [7] which discusses that the problem could be solved

as convex relaxation of the simplest problem that could be

attained from observed data:

minimize rank(X)

subject to Xij = Mi,j for (i, j) ∈ Ω

which is discussed in [10] that solving this problem is

exponential in terms of the size of the matrix both theoretically

and practically. Therefore, the following relaxation of the

problem has been suggested in [7]:

minimize ‖X‖∗
subject to Xij = Mi,j for (i, j) ∈ Ω

where ‖.‖∗ stands for nuclear norm minimization. Authors

has proved that given |Ω| > Cn1.2r log n and if the matrix

is not coherent then the problem above has a unique solution

given n = max(n1, n2). In follow-up works, the problem has

been studied in more details and more tight bounds has been

suggested and proved [8], [13], [29].
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Recently it has been shown in many problems that adaptive

sensing gives stronger performance guarantees [23], [30]

compared to traditional methods. Active learning has been

comprehensively studied in many survey papers [33], [38]. For

optimization problems, adaptivity has been studied in [3], [21],

[28], [35], for curriculum learning it is studied in [15], [18],

[36] and the idea has been applied to many other problems.

In terms of compressed sensing and exact matrix

completion, some of the earliest works are due [11], [12],

[19]. Later many active matrix completion algorithms were

proposed by researchers [5], [22], [32]. In the streamline of

works [19], [20] authors suggest a single phase algorithm

which is further extended by [2], [25]–[27].

Matrix completion problem has been studied both with noise

and noiseless setting. In noisy setting, generally we try to

estimate the underlying low-rank structure, using the idea of

to threshold singular values. Some of the example works are

[1], [6], [17], [31], [34]. In noiseless setting, we generally call

the problem exact low-rank matrix completion and it also has

been in the center of attention of many researchers [4], [9],

[16], [37].

So far all the discussed matrix completion algorithms

described here work assuming that observation complexity

of each entry is the same across entries. An interesting and

intuitive extension of this problem is to assume different

entries of the matrix having different cost. It is in a way

intuitive, that in an example problem of rating movies,

watching longer movies requires more time cost than watching

shorter ones. Also assuming that different people having

different time availability, even the cost of the same length

movie could be perceived to be different across various people.

Firstly, we will assume that underlying m× n sized rank-r
matrix M has different cost for each column. Specifically,

there is a set of costs {c1, c2, . . . , cn} which any entry Mij

has the cost cj no matter which index we pick for i. Secondly,

we assume that there is a set of cost entries {c11, . . . cmn}
that each entry i, j of the matrix Mij has the cost of cij . We

give different optimality condition based on the different cost

model.

A. Preliminaries

We briefly introduce notations and definitions used in this

paper. We use similar notations as it has been used before in

the literature to keep the consistency. M stands for the target

matrix that we want to recover which has size of m× n and

rank of r. ‖x‖ denote the L2 norm of a vector x ∈ R
n. xΩ

denote the sub-vector of x where coordinates are from Ω. For
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any R ⊂ [m], MR: stands for an |R| × n sized submatrix

of M that rows are restricted by R. We define M:C in a

similar way for restriction with respect to columns. Intuitively,

MR:C defined for |R|× |C| sized submatrix of M with rows

restricted to R and columns restricted to C. Moreover, for the

special case Mi: stands for i-th row and M:j stands for the

j’th column. Similarly, Mi:C will represent the restriction of

the row i by C and MR:j represents restriction of the column

j by R. As mentioned in [24] the sparsity number is defined

by first defining the nonsparsity number:

ψ(M) = min{‖x‖0|x = Mz and z /∈ null(M)}
ψ(U) = min{‖x‖0|x ∈ U and x �= 0}

then using this number we define sparsity-number:

ψ(x) = m− ψ(x)

ψ(M) = m− ψ(M)

ψ(U) = m− ψ(U)

II. MAIN RESULTS

The algorithm ERCS is just modification of the algorithm

[19] or [25] in the input phase. We show observing just d =
ψ(U) + 1 many entries in each column is enough te decide

whether partially observed column is contained in the subspace

or not.

Under the condition that the column space U of the

underlying matrix satisfies r − 1 = ψ(U), the observation

complexity of the algorithm ERCS becomes m × r + (n −
r) × r = (m + n − r)r which is the degree of freedom of

the set of m× n sized rank-r matrices. Therefore, under this

condition ERCS is absolutely optimal

Algorithm 1 ERCS Exact Recovery with Column Sparsity

Input: d = ψ(U) + 1
Initialize: k = 0, Û0 = ∅

1: Draw uniformly random entries Ω ⊂ [m] of size d
2: Observe entire MΩ:

3: for i from 1 to n do
4: if ‖MΩ:i − PUΩMΩ:i‖ > 0
5: Fully observe M:i

6: Ûk+1 ← Ûk ∪M:i

7: Orthogonalize Ûk+1

8: k = k + 1
9: otherwise: M̂:i = ÛkÛk+

Ω: M̂Ω:i

10: end for
Output: Underlying matrix M̂

Theorem 1: Let U represent the column space of the m×n
sized matrix M of rank r. Then, ERCS exactly recovers M
by

m× r + (n− r)(ψ(U) + 1)

observations.

Proof: We start by showing ERCS recovers M exactly

and later we focus on observation count. To prove correctness

of exact recovery we use mathematical induction as follows:

Hypothesis: after i-th iteration ERCS already correctly

recovered first i columns.

Base case: i = 1 is trivial as if at least one of the

observed entries is nonzero we completely observe the column,

which guarantees correctness. On the other hand, if it happens

all of ψ(U) + 1 entries are zero, then the first column is

indeed completely zero because the definition of the space
sparsity number implies there can be at most ψ(U) many zero

coordinates in a nonzero vector in the column space.

Hypothesis proof : Let us assume after step i−1, ERCS
recovered first i − 1 columns correctly and we want to show

that the algorithm exactly recovers i-th column too. We use

the lemma 1 and 6 from [27] to verify this fact:

Lemma 1: Let U be a subspace of R
m and x1, x2, ..., xn

be any set of vectors from U. Then the linear dependence of

x1
Ω, x

2
Ω, ..., x

n
Ω implies linear dependence of x1, x2, ..., xn, for

any Ω ⊂ [m] such that |Ω| > ψ(U).
Lemma 2: Let U be a subspace of R

m and x1, x2, ..., xn

be any set of vectors from U. Then the linear dependence of

x1, x2, ..., xn implies linear dependence of x1
Ω, x

2
Ω, ..., x

n
Ω, for

any Ω ⊂ [m].
From the design of the algorithm MΩ:i is already observed.

Then, if in the line 4, ERCS decides the column is linearly

independent with previous columns, as in the next line we

completely observe the column there is no chance that the

algorithm can do mistake under this case. Therefore, the only

remaining case is, if in the line 4 the algorithm decides the

column i is linearly dependent.

From the statement of lemma 1, if a set of vectors from

a subspace U are linearly dependent on a given subset of

coordinates, then they are indeed linearly dependent. We

conclude that the algorithm’s decision is correct and by just

back projection method, the algorithm recovers remaining

entries of the partially observed column. Therefore, column

i also recovered correctly and we are done with the proof of

induction hypothesis.

Our next goal is to show the observation complexity

is m × r + (n − r)(ψ(U) + 1). From the lemma 1, we

conclude that whenever current column is indeed linearly

independent with previous columns, the ERCS also decides

it is linearly independent. Moreover, from the lemma 10,

we conclude that if the current column is linearly dependent

with previous columns, then in this case ERCS decides it is

linearly dependent. As there are r many linearly independent

columns in the underlying matrix M, the algorithm decides

independence exactly r times and in each of them it does

complete observations. However, in remaining n− r columns,

number of observations is exactly ψ(U)+ 1. As a conclusion,

number of total observations is: rm+ (n− r)(ψ(U) + 1)
Corollary 2: ERCS still performs correctly under the case

in each column, number of observed entries is strictly lower

bounded by ψ(U) : d ≥ ψ(U) + 1. Moreover, the number of

observations will be m× r + (n− r)d
Proof: The proof is exactly proceeds as proof of the

theorem. The key point is to notice, lemma 1 and lemma 2
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are still satisfying.

a) Optimality of ERCS:: We notice that many adaptive

algorithms such as [19] and ERCS have two stages of

observations.

• Select subset of rows and observe them completely.

• Detect linearly independent columns and observe them

completely.

The discussion for tightness of the lemma 1 implies that

ERCS is optimal deterministic two stage observation,

low-rank exact recovery algorithm. Moreover, in the corollary

we discussed for any d ≥ ψ(U) the ERCS algorithm

would still perform correctly. Therefore, having constant factor

approximation of the space sparsity number of the column

space would lead asymptotically optimal algorithm:

d̂ ≤ Kd =⇒ d̂+ 1 ≤ K(d+ 1)

=⇒ (n− r)(d̂+ 1) ≤ (n− r)K(d+ 1)

adding mr to both side leads to

rm+ (n− r)(d̂+ 1) ≤ rm+ (n− r)K(d+ 1)

≤ Krm+K(n− r)(d+ 1)

= K
(
rm+ (n− r)(d+ 1)

)
Notice that rm+(n−r)(d̂+1) is the observation complexity

we have and
(
rm+(n−r)(d+1)

)
is optimal two stage as we

discussed here. All together, the inequality implies constant

approximation to space sparsity number gives as constant

approximation to optimal solution.

Here, we discuss matrix completion problem with relatively

different setting. Previously, we focused on the case, where

each of the entry of underlying matrix M has the same

observation cost. In this section we discuss the completion

problem where entries of the matrix has non uniform cost to

observe. We tackle with two type of non uniformity here:

• Entries has uniform cost across the same column, but

different columns has different costs.

• Each entry of the matrix has different cost.

A. Uniform Cost Across Columns

Problem: For any fixed j, the cost of observing Mi:j is

equal to χj for any 1 ≤ i ≤ m, and χ1, χ2, . . . , χn are

arbitrary positive numbers and we target to recover the matrix

M as cheap as possible.

Solution: We propose a slight modification of the ERCS
to solve optimally among the two staged methods as we

discussed before. Lets remind that in the algorithm we show

that selecting any d = ψ(U) + 1 many rows is enough to

guarantee exact recovery deterministically. In the next stage,

we iteratively go through columns one by one starting with the

first column, and if we detect a column is linearly independent

with previous ones, we completely observe it. If not, we

recover it using the pre-determined subspace. To adapt the

solution for this problem, we just need to change the order of

the columns we start to check. Basically, instead of starting

with the first column, we should start with the cheapest one.

If we decide its not contained in the current subspace, we

completely observe all entries and if it is contained then we

just recover with the current subspace. Then, we move to

second cheapest column and so on so forth with the increasing

order of cost.

Correctness: We can see that the proof of the correctness of

ERCS is independent of the order of the columns. Therefore,

selecting columns with increasing order of the cost would not

change the correctness of the algorithm.

Optimality: The set of two stage algorithm can be

parameterized by two numbers. First one is - d- the number

of rows fully observed and the second is the subset of indices

of columns to observe fully. We analyse the optimal algorithm

for three cases of values of d:

1. d ≤ ψ(U). It is obvious that optimal algorithm cannot have

d ≤ ψ(U), because from the discussion for tightness of the

lemma 1 and optimality of ERCS, there are matrices that

selection of d = ψ(U) rows is not enough to guarantee the

existence of r linearly independent rows.

2. d = ψ(U) + 1 It is a well known fact that the set of

column bases are matroids and Greedy algorithms gives the

optimal solution for matroids [14]. Note that the algorithm

discussed is efficient way of giving greedy solution.

3. d > ψ(U) + 1. Let us assume that the optimal algorithm

takes d̃ > d rows in the first phases and columns: i1, i2, . . . , ir̃.

We first note that, r̃ = r, it is because if r̃ < r then selected

columns are not enough to learn the column space and if r̃ > r
we can pick subset of these columns that is basis for column

space and selecting this basis has less cost which contradicts

to optimality. Therefore, r̃ = r for optimal case. Moreover, we

can use the same subset selection argument to pick ψ(U) + 1
sized subset of rows then select the same set of columns and

it will be cheaper. Therefore, for optimality we should select

exactly d = ψ(U) + 1 rows.

B. Exact Recovery with Full Heterogeneity

Problem: For any i, j, the cost of observing Mi:j is equal

to χij and χ11, χ12, . . . , χmn are arbitrary positive numbers

and similar to the previous problem we target to recover the

matrix M as cheap as possible.

Solution: We describe the solution in the following algorithm:

a) Correctness:: We can see that the correctness of

ERHC is due to the correctness of ERCS as selecting

cheapest ψ(U) + 1 is special case of selecting any ψ(U) + 1
many columns and iteration order over the columns doesn’t

matter similarly for this case too.

b) Optimality:: Unlike to the previous case, greedy

algorithm does not give us the cheapest combination of

columns and rows. Following example provides a matrix and

entry costs that shows that greedy algorithm is not optimal.
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Algorithm 2 ERHC: Exact recovery with heterogeneous cost

Input: d = ψ(U) + 1 here U is the column space of the

underlying matrix

Initialize: M̂ set to m× n sized null matrix, Û0 = ∅, k = 0

1: for i from 1 to m, do
2: χi =

∑n
j=1 χij

3: end for
4: Sort χis with increasing order and select first d and denote

their index set by−R
5: Observe entire MR:

6: for i from 1 to m, do
7: χi =

∑
j∈[n]\R χij

8: end for
9: Sort χis with increasing order and lets denote

{i1, i2, . . . , in} as χi1 ≤ χi2 ≤ . . . ≤ χin

10: for h from 1 to m, do
11: If ‖MR:ih − P

̂Uk
R
MR:ih‖2 > 0

12: Fully observe M:ih add it to the basis Ûk

13: Orthogonalize Ûk

14: k = k + 1
15: Otherwise: M̂:ih = ÛkÛk+

R: M̂R:ih

16: end for
17: return M̂

Output: Underlying matrix M̂

M =

⎡
⎢⎢⎣
1 1 2 3
1 2 3 4
1 3 4 5
1 4 5 6

⎤
⎥⎥⎦ χ =

⎡
⎢⎢⎣
1 1 4 1
1 5 3 4
4 3 4 4
1 4 4 8

⎤
⎥⎥⎦

The greedy algorithm for this case observes rows R = {1, 2}
and columns C = {1, 2} which has overall cost of:

(1 + 1 + 4 + 1) + (1 + 5 + 3 + 4) + (4 + 1) + (3 + 4) = 32

However, observing R = {1, 3} and columns C = {1, 3}
would give us overall cost of:

(1 + 1 + 4 + 1) + (4 + 3 + 4 + 4) + (1 + 1) + (3 + 4) = 31

which is cheaper than greedy algorithm. However, with the

same cost matrix, there are other matrices that shares the same

column space as M (therefore the same column space sparsity

number) but greedy algorithm is still optimal. For the same

cost matrix with a slightly modified underlying matrix, we can

give an example:

M =

⎡
⎢⎢⎣
1 1 2 2
1 2 2 3
1 3 2 4
1 4 2 5

⎤
⎥⎥⎦ χ =

⎡
⎢⎢⎣
1 1 4 1
1 5 3 4
4 3 4 4
1 4 4 8

⎤
⎥⎥⎦

This gives us the conclusion, with just information of the

observation cost matrix and column space sparsity number,

we cannot pick theoretical optimal set of rows and columns

that is guaranteed carrying all of information of the underlying

matrix.

c) 2-Optimality:: Even though greedy algorithm cannot

return the optimal set of rows and columns, here we show that

the overall cost of the cost of the algorithm is at most twice

expensive than optimal.

We denote the row set and column set parameter of optimal

2-stage algorithm R̃ and C̃ and cost of it by σOPT . Then, we

can decompose optimal solution into its parts as following:

σOPT = χ(MR̃:) + χ(M:C̃)− χ(MR̃:C̃)

.

Trivially, both of the following inequalities satisfied

χ(MR̃:C̃) ≤ χ(M:C̃)

χ(MR̃:C̃) ≤ χ(MR̃:)

for which these inequalities implies that

σOPT ≥ max(χ(M:C̃), χ(MR̃:)).

Now lets decompose cost of greedy algorithm to its pieces:

σG = χ(MR:) + χ(M:C)− χ(MR:C)

Note that the greedy algorithm does not necessarily selects

cheapest basis columns, however selected columns minimizes

the overall cost after rows selected. Therefore, we conclude

that if we denote the set of cheapest columns by CB , then the

following inequality satisfied:

σG = χ(MR:) + χ(M:C)− χ(MR:C)

≤ χ(MR:) + χ(M:CB )− χ(MR:CC )

≤ 2 max
(
χ(MR:), χ(M:CB )

)
As we discussed before in order to have guarantee that

we will be able to have full information to detect linearly

independent columns we need to observe at least ψ(U) + 1
many rows. Moreover, as greedy algorithm observe exactly

ψ(U) + 1 many rows by choosing cheapest columns we are

guaranteed to have:

χ(MR:) ≤ χ(MR̃:)

Similarly as CB represents the set of cheapest columns, we

have:

χ(M:CB ) ≤ χ(M:C̃)

which together implies
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max
(
χ(MR:), χ(M:CB )

) ≤ max
(
χ(MR̃:), χ(M:C̃)

)
.

Putting all inequalities together we conclude:

σG ≤ 2 max
(
χ(MR:), χ(M:CB )

)
≤ 2 max

(
χ(MR̃:), χ(M:C̃)

)
≤ 2σOPT

Therefore, we conclude that greedy algorithm gives us

2-optimal algorithm.

d) Tightness:: In the following example, we see that

greedy algorithm cannot guarantee better than 2-optimality:

χ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
100

ε
100

ε
100

ε
100 10− ε 10− ε

ε
100

ε
100

ε
100

ε
100 10− ε 10− ε

10 10 ε
100

ε
100

ε
100

ε
100

10 10 ε
100

ε
100

ε
100

ε
100

ε
100

ε
100 10 10 10− ε 10− ε

ε
100

ε
100 10 10 10− ε 10− ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is clear that optimal choice is C = {1, 2} and R = {3, 4}
which gives the cost of:

σOPT = 10 + 10 + 10 + 10 + 16× ε

100
= 40 +

ε

6.25

However, greedy algorithm will pick R = {1, 2} in the first

stage which has overall cost of

(10− ε) + (10− ε) + (10− ε) + (10− ε)

+ 8× ε

100

= 40− 4ε+
ε

12.5

Then in the next stage it choose columns C = {5, 6} which

also has cost of

(10− ε) + (10− ε) + (10− ε) + (10− ε)

+ 4× ε

100

= 40− 4ε+
ε

25

All together cumulative cost is

(40− 4ε) +
ε

12.5
+ (40− 4ε) +

ε

25
= 80− 8ε+

3

25
ε.

To find the fraction of this cost to optimal cost we get

σG

σOPT
=

80− 8ε+ 2ε
25

40 + ε
6.25

≈ 2− ε

5
.

Therefore for any number smaller than 2, we can choose an ε
which ratio of the cost of greedy algorithm to optimal set is

larger than that number. This implies that, 2-optimality of the

algorithm ERHC is tight.

III. CONCLUSION

In this paper we have discussed heterogeneous matrix

problem. Matrix completion has been mainly studied in

uniform cost model, which in many real-life applications this

seems to be unrealistic. Different features might have different

costs to compute them, and even each feature might have

different cost to different users. In that light, we think it’s

necessary to study matrix completion in this setting. Interesting

extension of this work would be in the space of low-rank

estimation. In real-life examples, data are mainly coming

as low-rank structure with additional small noise. Studying

this problem with heterogeneous model, finding cheapest

solution to the estimation problem would cover many real-life

scenarios.
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