Search results for: Dynamic Error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3089

Search results for: Dynamic Error

1769 Application of Adaptive Neuro-Fuzzy Inference System in Smoothing Transition Autoregressive Models

Authors: Ε. Giovanis

Abstract:

In this paper we propose and examine an Adaptive Neuro-Fuzzy Inference System (ANFIS) in Smoothing Transition Autoregressive (STAR) modeling. Because STAR models follow fuzzy logic approach, in the non-linear part fuzzy rules can be incorporated or other training or computational methods can be applied as the error backpropagation algorithm instead to nonlinear squares. Furthermore, additional fuzzy membership functions can be examined, beside the logistic and exponential, like the triangle, Gaussian and Generalized Bell functions among others. We examine two macroeconomic variables of US economy, the inflation rate and the 6-monthly treasury bills interest rates.

Keywords: Forecasting, Neuro-Fuzzy, Smoothing transition, Time-series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
1768 Code-Aided Turbo Channel Estimation for OFDM Systems with NB-LDPC Codes

Authors: Ł. Januszkiewicz, G. Bacci, H. Gierszal, M. Luise

Abstract:

In this paper channel estimation techniques are considered as the support methods for OFDM transmission systems based on Non Binary LDPC (Low Density Parity Check) codes. Standard frequency domain pilot aided LS (Least Squares) and LMMSE (Linear Minimum Mean Square Error) estimators are investigated. Furthermore, an iterative algorithm is proposed as a solution exploiting the NB-LDPC channel decoder to improve the performance of the LMMSE estimator. Simulation results of signals transmitted through fading mobile channels are presented to compare the performance of the proposed channel estimators.

Keywords: LDPC codes, LMMSE, OFDM, turbo channelestimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
1767 PSRR Enhanced LDO Regulator Using Noise Sensing Circuit

Authors: Min-ju Kwon, Chae-won Kim, Jeong-yun Seo, Hee-guk Chae, Yong-seo Koo

Abstract:

In this paper, we presented the LDO (low-dropout) regulator which enhanced the PSRR by applying the constant current source generation technique through the BGR (Band Gap Reference) to form the noise sensing circuit. The current source through the BGR has a constant current value even if the applied voltage varies. Then, the noise sensing circuit, which is composed of the current source through the BGR, operated between the error amplifier and the pass transistor gate of the LDO regulator. As a result, the LDO regulator has a PSRR of -68.2 dB at 1k Hz, -45.85 dB at 1 MHz and -45 dB at 10 MHz. the other performance of the proposed LDO was maintained at the same level of the conventional LDO regulator.

Keywords: LDO regulator, noise sensing circuit, current reference, pass transistor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622
1766 The Comparison of Data Replication in Distributed Systems

Authors: Iman Zangeneh, Mostafa Moradi, Ali Mokhtarbaf

Abstract:

The necessity of ever-increasing use of distributed data in computer networks is obvious for all. One technique that is performed on the distributed data for increasing of efficiency and reliablity is data rplication. In this paper, after introducing this technique and its advantages, we will examine some dynamic data replication. We will examine their characteristies for some overus scenario and the we will propose some suggestion for their improvement.

Keywords: data replication, data hiding, consistency, dynamicdata replication strategy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
1765 Bioprocess Intelligent Control: A Case Study

Authors: Mihai Caramihai Ana A Chirvase, Irina Severin

Abstract:

Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.

Keywords: Fed batch bioprocess, mass-balance model, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
1764 The Effect of Different Compression Schemes on Speech Signals

Authors: Jalal Karam, Raed Saad

Abstract:

This paper studies the effect of different compression constraints and schemes presented in a new and flexible paradigm to achieve high compression ratios and acceptable signal to noise ratios of Arabic speech signals. Compression parameters are computed for variable frame sizes of a level 5 to 7 Discrete Wavelet Transform (DWT) representation of the signals for different analyzing mother wavelet functions. Results are obtained and compared for Global threshold and level dependent threshold techniques. The results obtained also include comparisons with Signal to Noise Ratios, Peak Signal to Noise Ratios and Normalized Root Mean Square Error.

Keywords: Speech Compression, Wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
1763 Predicting Shot Making in Basketball Learnt from Adversarial Multiagent Trajectories

Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan

Abstract:

In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. To approach this problem, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.

Keywords: basketball, computer vision, image processing, convolutional neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
1762 Impulsive Noise-Resilient Subband Adaptive Filter

Authors: Young-Seok Choi

Abstract:

We present a new subband adaptive filter (R-SAF) which is robust against impulsive noise in system identification. To address the vulnerability of adaptive filters based on the L2-norm optimization criterion against impulsive noise, the R-SAF comes from the L1-norm optimization criterion with a constraint on the energy of the weight update. Minimizing L1-norm of the a posteriori error in each subband with a constraint on minimum disturbance gives rise to the robustness against the impulsive noise and the capable convergence performance. Experimental results clearly demonstrate that the proposed R-SAF outperforms the classical adaptive filtering algorithms when impulsive noise as well as background noise exist.

Keywords: Subband adaptive filter, L1-norm, system identification, robustness, impulsive interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
1761 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique

Authors: Nishant Shrivastava, D. K. Sehgal

Abstract:

In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.

Keywords: Finite element, Lagrangian, optimal stress location, serendipity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 605
1760 A Coherent Relationship between EconomicGrowth and Unemployment: An Empirical Evidence from Pakistan

Authors: T. Hussain, M. W. Siddiqi, A. Iqbal

Abstract:

The study is aimed to test causal relationship between growth and unemployment, using time series data for Pakistan from 1972 to 2006. Growth is considered to be a pathway to decrease the level of unemployment. Unemployment is a social and political issue. It is a phenomenon where human resources are wasted leading to deacceleration in growth. Johanson Cointegration shows that there is long run relationship between growth and unemployment. For short run dynamics and causality, the study utilizes Vector Error Correction Model (VECM). The results of VECM indicate that there is short and long run causal relation between growth and unemployment including capital, labor and human capital as explanatory variables.

Keywords: Economic Growth, Unemployment, Cointegrationand Causality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151
1759 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: Human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
1758 Synthesis of Digital Circuits with Genetic Algorithms: A Fractional-Order Approach

Authors: Cecília Reis, J. A. Tenreiro Machado, J. Boaventura Cunha

Abstract:

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.

Keywords: Circuit design, fractional-order systems, genetic algorithms, logic circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
1757 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: Advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
1756 Performance Analysis of Selective Adaptive Multiple Access Interference Cancellation for Multicarrier DS-CDMA Systems

Authors: Maged Ahmed, Ahmed El-Mahdy

Abstract:

In this paper, Selective Adaptive Parallel Interference Cancellation (SA-PIC) technique is presented for Multicarrier Direct Sequence Code Division Multiple Access (MC DS-CDMA) scheme. The motivation of using SA-PIC is that it gives high performance and at the same time, reduces the computational complexity required to perform interference cancellation. An upper bound expression of the bit error rate (BER) for the SA-PIC under Rayleigh fading channel condition is derived. Moreover, the implementation complexities for SA-PIC and Adaptive Parallel Interference Cancellation (APIC) are discussed and compared. The performance of SA-PIC is investigated analytically and validated via computer simulations.

Keywords: Adaptive interference cancellation, communicationsystems, multicarrier signal processing, spread spectrum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
1755 A PWM Controller with Multiple-Access Table Look-up for DC-DC Buck Conversion

Authors: Steve Hung-Lung Tu, Chu-Tse Lee

Abstract:

A new power regulator controller with multiple-access PID compensator is proposed, which can achieve a minimum memory requirement for fully table look-up. The proposed regulator controller employs hysteresis comparators, an error process unit (EPU) for voltage regulation, a multiple-access PID compensator and a lowpower- consumption digital PWM (DPWM). Based on the multipleaccess mechanism, the proposed controller can alleviate the penalty of large amount of memory employed for fully table look-up based PID compensator in the applications of power regulation. The proposed controller has been validated with simulation results.

Keywords: Multiple access, PID compensator, PWM, Buck conversion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
1754 Enhanced Spectral Envelope Coding Based On NLMS for G.729.1

Authors: Keunseok Cho, Sangbae Jeong, Hyungwook Chang, Minsoo Hahn

Abstract:

In this paper, a new encoding algorithm of spectral envelope based on NLMS in G.729.1 for VoIP is proposed. In the TDAC part of G.729.1, the spectral envelope and MDCT coefficients extracted in the weighted CELP coding error (lower-band) and the higher-band input signal are encoded. In order to reduce allocation bits for spectral envelope coding, a new quantization algorithm based on NLMS is proposed. Also, reduced bits are used to enhance sound quality. The performance of the proposed algorithm is evaluated by sound quality and bit reduction rates in clean and frame loss conditions.

Keywords: G.729.1, MDCT coefficient, NLMS, spectral envelope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
1753 Hot Deformability of Si-Steel Strips Containing Al

Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar

Abstract:

The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a  was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.

Keywords: Si-steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
1752 Research of Ring MEMS Rate Integrating Gyroscopes

Authors: Hui Liu, Haiyang Quan

Abstract:

This paper To get the angle value with a MEMS rate gyroscope in some specific field, the usual method is to make an integral operation to the rate output, which will lead the error cumulating effect. So the rate gyro is not suitable. MEMS rate integrating gyroscope (MRIG) will solve this problem. A DSP system has been developed to implement the control arithmetic. The system can measure the angle of rotation directly by the control loops that make the sensor work in whole-angle mode. Modeling the system with MATLAB, desirable results of angle outputs are got, which prove the feasibility of the control arithmetic.

Keywords: Rate gyroscope, Rate integrating gyroscope, Whole angle mode, MATLAB modeling, DSP control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3235
1751 Systematic Analysis of Dynamic Association of Health Outcomes with Computer Usage for Office Staff

Authors: Xiaoshu Lu, Esa-Pekka Takala, Risto Toivonen

Abstract:

This paper systematically investigates the timedependent health outcomes for office staff during computer work using the developed mathematical model. The model describes timedependent health outcomes in multiple body regions associated with computer usage. The association is explicitly presented with a doseresponse relationship which is parametrized by body region parameters. Using the developed model we perform extensive investigations of the health outcomes statically and dynamically. We compare the risk body regions and provide various severity rankings of the discomfort rate changes with respect to computer-related workload dynamically for the study population. Application of the developed model reveals a wide range of findings. Such broad spectrum of investigations in a single report literature is lacking. Based upon the model analysis, it is discovered that the highest average severity level of the discomfort exists in neck, shoulder, eyes, shoulder joint/upper arm, upper back, low back and head etc. The biggest weekly changes of discomfort rates are in eyes, neck, head, shoulder, shoulder joint/upper arm and upper back etc. The fastest discomfort rate is found in neck, followed by shoulder, eyes, head, shoulder joint/upper arm and upper back etc. Most of our findings are consistent with the literature, which demonstrates that the developed model and results are applicable and valuable and can be utilized to assess correlation between the amount of computer-related workload and health risk.

Keywords: Computer-related workload, health outcomes, dynamic association, dose-response relationship, systematic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
1750 Design and Implementation of a 10-bit SAR ADC with A Programmable Reference

Authors: Hasmayadi Abdul Majid, Yuzman Yusoff, Noor Shelida Salleh

Abstract:

This paper presents the development of a single-ended 38.5 kS/s 10-bit programmable reference SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and a SAR digital logic to create 10 effective bits ADC. A programmable reference circuitry allows the ADC to operate with different input range from 0.6 V to 2.1 V. The ADC consumed less than 7.5 mW power with a 3 V supply.

Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Resistive DAC, Programmable Reference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
1749 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites

Authors: J. R. Büttler, T. Pham

Abstract:

Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.

Keywords: Dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite, T-peel test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
1748 Discrete Modified Internal Model Control for a nth-order Plant with an Integrator and Dead-time

Authors: Manato Ono, Hiromitsu Ogawa, Naohiro Ban, Yoshihisa Ishida

Abstract:

This paper deals with a design method of a discrete modified Internal Model Control (IMC) for a plant with an integrator and dead time. If there is a load disturbance in the input or output side of the plant, the proposed control system can eliminate the steady-state error caused by it. The disturbance compensator in this method is simple and its order is low regardless of that of a plant. The simulation studies show that the proposed method has superior performance for a load disturbance rejection and robustness.

Keywords: Internal Model Control, Smith Predictor, Dead time, Integrator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
1747 Improvements in Navy Data Networks and Tactical Communication Systems

Authors: Laurent Enel, Franck Guillem

Abstract:

This paper considers the benefits gained by using an efficient quality of service management such as DiffServ technique to improve the performance of military communications. Low delay and no blockage must be achieved especially for real time tactical data. All traffic flows generated by different applications do not need same bandwidth, same latency, same error ratio and this scalable technique of packet management based on priority levels is analysed. End to end architectures supporting various traffic flows and including lowbandwidth and high-delay HF or SHF military links as well as unprotected Internet sub domains are studied. A tuning of Diffserv parameters is proposed in accordance with different loads of various traffic and different operational situations.

Keywords: Military data networks, Quality of service, Tacticalsystems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
1746 14-Bit 1MS/s Cyclic-Pipelined ADC

Authors: S. Saisundar, Shan Jiang, Kevin T. C. Chai, David Nuttman, Minkyu Je

Abstract:

This paper presents a 14-bit cyclic-pipelined Analog to digital converter (ADC) running at 1 MS/s. The architecture is based on a 1.5-bit per stage structure utilizing digital correction for each stage. The ADC consists of two 1.5-bit stages, one shift register delay line, and digital error correction logic. Inside each 1.5-bit stage, there is one gain-boosting op-amp and two comparators. The ADC was implemented in 0.18µm CMOS process and the design has an area of approximately 0.2 mm2. The ADC has a differential input range of 1.2 Vpp. The circuit has an average power consumption of 3.5mA with 10MHz sampling clocks. The post-layout simulations of the design satisfy 12-bit SNDR with a full-scale sinusoid input.


Keywords: Analog to digital converter, cyclic, gain-boosting, pipelined.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3258
1745 High Cycle Fatigue Analysis of a Lower Hopper Knuckle Connection of a Large Bulk Carrier under Dynamic Loading

Authors: Vaso K. Kapnopoulou, Piero Caridis

Abstract:

The fatigue of ship structural details is of major concern in the maritime industry as it can generate fracture issues that may compromise structural integrity. In the present study, a fatigue analysis of the lower hopper knuckle connection of a bulk carrier was conducted using the Finite Element Method by means of ABAQUS/CAE software. The fatigue life was calculated using Miner’s Rule and the long-term distribution of stress range by the use of the two-parameter Weibull distribution. The cumulative damage ratio was estimated using the fatigue damage resulting from the stress range occurring at each load condition. For this purpose, a cargo hold model was first generated, which extends over the length of two holds (the mid-hold and half of each of the adjacent holds) and transversely over the full breadth of the hull girder. Following that, a submodel of the area of interest was extracted in order to calculate the hot spot stress of the connection and to estimate the fatigue life of the structural detail. Two hot spot locations were identified; one at the top layer of the inner bottom plate and one at the top layer of the hopper plate. The IACS Common Structural Rules (CSR) require that specific dynamic load cases for each loading condition are assessed. Following this, the dynamic load case that causes the highest stress range at each loading condition should be used in the fatigue analysis for the calculation of the cumulative fatigue damage ratio. Each load case has a different effect on ship hull response. Of main concern, when assessing the fatigue strength of the lower hopper knuckle connection, was the determination of the maximum, i.e. the critical value of the stress range, which acts in a direction normal to the weld toe line. This acts in the transverse direction, that is, perpendicularly to the ship's centerline axis. The load cases were explored both theoretically and numerically in order to establish the one that causes the highest damage to the location examined. The most severe one was identified to be the load case induced by beam sea condition where the encountered wave comes from the starboard. At the level of the cargo hold model, the model was assumed to be simply supported at its ends. A coarse mesh was generated in order to represent the overall stiffness of the structure. The elements employed were quadrilateral shell elements, each having four integration points. A linear elastic analysis was performed because linear elastic material behavior can be presumed, since only localized yielding is allowed by most design codes. At the submodel level, the displacements of the analysis of the cargo hold model to the outer region nodes of the submodel acted as boundary conditions and applied loading for the submodel. In order to calculate the hot spot stress at the hot spot locations, a very fine mesh zone was generated and used. The fatigue life of the detail was found to be 16.4 years which is lower than the design fatigue life of the structure (25 years), making this location vulnerable to fatigue fracture issues. Moreover, the loading conditions that induce the most damage to the location were found to be the various ballasting conditions.

Keywords: Lower hopper knuckle, high cycle fatigue, finite element method, dynamic load cases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
1744 Distributed Frequency Synchronization for Global Synchronization in Wireless Mesh Networks

Authors: Jung-Hyun Kim, Jihyung Kim, Kwangjae Lim, Dong Seung Kwon

Abstract:

In this paper, our focus is to assure a global frequency synchronization in OFDMA-based wireless mesh networks with local information. To acquire the global synchronization in distributed manner, we propose a novel distributed frequency synchronization (DFS) method. DFS is a method that carrier frequencies of distributed nodes converge to a common value by repetitive estimation and averaging step and sharing step. Experimental results show that DFS achieves noteworthy better synchronization success probability than existing schemes in OFDMA-based mesh networks where the estimation error is presented.

Keywords: OFDMA systems, Frequency synchronization, Distributed networks, Multiple groups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
1743 A Servo Control System Using the Loop Shaping Design Procedure

Authors: Naohiro Ban, Hiromitsu Ogawa, Manato Ono, Yoshihisa Ishida

Abstract:

This paper describes an expanded system for a servo system design by using the Loop Shaping Design Procedure (LSDP). LSDP is one of the H∞ design procedure. By conducting Loop Shaping with a compensator and robust stabilization to satisfy the index function, we get the feedback controller that makes the control system stable. In this paper, we propose an expanded system for a servo system design and apply to the DC motor. The proposed method performs well in the DC motor positioning control. It has no steady-state error in the disturbance response and it has robust stability.

Keywords: Loop Shaping Design Procedure (LSDP), servosystem, DC motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
1742 Design for Reliability and Manufacturing Yield (Study and Modeling of Defects in Integrated Circuits for their Reliability Analysis)

Authors: G. Ait Abdelmalek, R. Ziani

Abstract:

In this document, we have proposed a robust conceptual strategy, in order to improve the robustness against the manufacturing defects and thus the reliability of logic CMOS circuits. However, in order to enable the use of future CMOS technology nodes this strategy combines various types of design: DFR (Design for Reliability), techniques of tolerance: hardware redundancy TMR (Triple Modular Redundancy) for hard error tolerance, the DFT (Design for Testability. The Results on largest ISCAS and ITC benchmark circuits show that our approach improves considerably the reliability, by reducing the key factors, the area costs and fault tolerance probability.

Keywords: Design for reliability, design for testability, fault tolerance, manufacturing yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
1741 Unveiling the Mathematical Essence of Machine Learning: A Comprehensive Exploration

Authors: Randhir Singh Baghel

Abstract:

In this study, the fundamental ideas guiding the dynamic area of machine learning—where models thrive and algorithms change over time—are rooted in an innate mathematical link. This study explores the fundamental ideas that drive the development of intelligent systems, providing light on the mutually beneficial link between mathematics and machine learning.

Keywords: Machine Learning, deep learning, Neural Network, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103
1740 Kinematic Analysis of 2-DOF Planer Robot Using Artificial Neural Network

Authors: Jolly Shah, S.S.Rattan, B.C.Nakra

Abstract:

Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the forward and inverse kinematics of 2-DOF robotic manipulator with revolute joints. In this study the Denavit- Hartenberg (D-H) model is used to model robot links and joints. Also forward and inverse kinematics solution has been achieved using Artificial Neural Networks for 2-DOF robotic manipulator. It shows that by using artificial neural network the solution we get is faster, acceptable and has zero error.

Keywords: Artificial Neural Network, Forward Kinematics, Inverse Kinematics, Robotic Manipulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4336